82 resultados para LIDT Single-pulse laser


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sodium p-nitrophenolate dihydrate single crystals possess excellent nonlinear optical properties such that they can be used for optical second-harmonic generation. It belongs to the orthorhombic system with the space group Ima2. Slow evaporation or slow cooling techniques can be used to grow good optical quality single crystals from supersaturated solution. All the nine elastic constants of this crystal have been measured using an ultrasonic technique. Samples for measurements have been cut along desired crystallographic axes and the pulse echo overlap technique has been used to measure longitudinal and shear ultrasonic wave velocities along appropriate symmetry directions in the crystal. The McSkimin Delta t criterion has been applied to determine the round trip travel time accurately, from which the nine elastic constants have been evaluated. Temperature variation of selected elastic constants in a limited range have also been measured and reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetic field induced broadening of the normal to superconducting resistive transition of YBa2Cu3O7−x thin films laser deposited on (100) MgO substrates for field oriented parallel to the c axis is found to be significantly reduced in comparison with that found previously in single crystals and in films deposited on SrTiO3. This reduction in broadening is associated with a high density of defects which, while causing a slight decrease in Tc and an increase in the zero‐field transition width, seems to provide strong vortex pinning centers that reduce flux creep

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct writing of patterns is being widely attempted in the field of microelectronic circuit/device manufacture. Use of this technique eliminates the need for employing photolithographic process. Laser induced direct writing can be achieved by (i) Photochemical reaction [i] , (ii) Evaporation from target material [2], and (iii) decomposition.Micron size features of palladium and copper through decomposition of palladium acetate and copper formate respectively on quartz and silicon using Argon ion laser have been reported [3,4] .In this commuication we report a technique for both single line and large area depositon of copper through decomposition of copper acetate,(CH3COO)2Cu, on alumina substrates.Nd:YAG laser known for its reliability and low maintenance cost as compared to excimer and other gas lasers is used. This technique offers an attractive and economical alternative for manufacture of thin film microcircuits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A creep resistant permanent mould cast Mg alloy MRI 230D was laser surface alloyed with Al and a mixture of Al and Al2O3 using pulsed Nd:YAG laser irradiation at four different scan speeds in order to improve the corrosion and wear resistance. The microstructure, corrosion and wear behavior of the laser surface alloyed material is reported in this manuscript. The coating comprised of a featureless microstructure with cellular-dendritic microstructure near the interface and exhibited good interfacial bonding. A few solidification cracks reaching down to substrate were also observed. The two step coating with Al followed by a mixture of Al and Al2O3 exhibited a slightly better corrosion resistance than the single step coating with Al. In the long run, however, corrosion resistance of both the coatings became comparable to the as-cast alloy. The corroded surface of the laser surface alloyed specimens revealed a highly localized corrosion. The laser surface alloyed specimens exhibited an improvement in wear resistance. The laser scan speed did not exhibit a monotonic trend either in corrosion or wear resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cubic pyrochlore Bi1.5Zn1.0Nb1.5O7 thin films were deposited by pulsed laser ablation on Pt(200)/SiO2/Si at 500, 550, 600, and 650 degrees C. The thin films with (222) preferred orientation were found to grow at 650 degrees C with better crystallinity which was established by the lowest full-width half maxima of similar to 0.38. The dielectric response of the thin films grown at 650 degrees C have been characterized within a temperature range of 270-650 K and a frequency window of 0.1-100 kHz. The dielectric dispersion in the thin films shows a Maxwell-Wagner type relaxation with two different kinds of response confirmed by temperature dependent Nyquist plots. The ac conduction of the films showed a varied behavior in two different frequency regions. The power law exponent values of more than 1 at high frequency are explained by a jump-relaxation-model. The possibility of grain boundary related large polaronic hopping, due to two different power law exponents and transformation of double to single response in Nyquist plots at high temperature, has been excluded. The ``attempt jump frequency'' obtained from temperature dependent tangent loss and real part of dielectric constants, has been found to lie in the range of their lattice vibronic frequencies (10(12)-10(13) Hz). The activation energy arising from a large polaronic hopping due to trapped charge at low frequency region has been calculated from the ac conduction behavior. The range of activation energies (0.26-0.59. eV) suggests that the polaronic hopping at low frequency is mostly due to oxygen vacancies. (C) 2010 American Institute of Physics. doi:10.106311.3457335]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A variety of applications exist for reverse saturable absorbers (RSAs) in the area of optical pulse processing and computing. An RSA can be used as power limiter/pulse smoother and energy limiter/pulse shortner of laser pulses. A combination of RSA and saturable absorber (SA) can be used for mode locking and pulse shaping between high power laser amplifiers in oscillator amplifier chain. Also, an RSA can be used for the construction of a molecular spatial light modulator (SLM) which acts as an input/output device in optical computers. A detailed review of the theoretical studies of these processes is presented. Current efforts to find RSAs at desired wavelength for testing these theoretical predictions are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Excimer laser irradiation at ambient temperature has been employed to produce nanostructured silicon surfaces. Nanoindentation was used to investigate the nanomechanical properties of the deformed surfaces as a function of laser parameters, such as the angle of incidence and number of laser pulses at a fixed laser fluence of 5 J cm(-2). A single-crystal silicon 311] surface was severely damaged by laser irradiation and became nanocrystalline with an enhanced porosity. The resulting laser-treated surface consisted of nanometer-sized particles. The pore size was controlled by adjusting the angle of incidence and the number of laser pulses, and varied from nanometers to microns. The extent of nanocrystallinity was large for the surfaces irradiated at a small angle of incidence and by a high number of pulses, as confirmed by x-ray diffraction and Raman spectroscopy. The angle of incidence had a stronger effect on the structure and nanomechanical properties than the number of laser pulses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Degenerate pump-probe reflectivity experiments have been performed on a single crystal of bismuth telluride (Bi2Te3) as a function of sample temperature (3 K to 296 K) and pump intensity using similar to 50 femtosecond laser pulses with central photon energy of 1.57 eV. The time-resolved reflectivity data show two coherently generated totally symmetric A(1g) modes at 1.85 THz and 3.6 THz at 296 K which blue-shift to 1.9 THz and 4.02 THz, respectively, at 3 K. At high photoexcited carrier density of similar to 1.7 x 10(21) cm(-3), the phonon mode at 4.02 THz is two orders of magnitude higher positively chirped (i.e the phonon time period decreases with increasing delay time between the pump and the probe pulses) than the lower-frequency mode at 1.9 THz. The chirp parameter, beta is shown to be inversely varying with temperature. The time evolution of these modes is studied using continuous-wavelet transform of the time-resolved reflectivity data. Copyright (C) EPLA, 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel approach for simultaneous measurement of strain and temperature with a single tapered fiber Bragg grating is proposed. This method is based on the fact that the reflectivity at central wavelength of FBG reflection changes with chirp (strain gradient). A diode laser is locked to the central wavelength of FBG reflection. Central wavelength of the FBG shifts with temperature. Change in reflectivity & wavelength of the diode laser were used to measure strain and temperature on the FBG respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method based on analysis of a single diffraction pattern is proposed to measure deflections in micro-cantilever (MC) based sensor probes, achieving typical deflection resolutions of 1nm and surface stress changes of 50 mu N/m. The proposed method employs a double MC structure where the deflection of one of the micro-cantilevers relative to the other due to surface stress changes results in a linear shift of intensity maxima of the Fraunhofer diffraction pattern of the transilluminated MC. Measurement of such shifts in the intensity maxima of a particular order along the length of the structure can be done to an accuracy of 0.01mm leading to the proposed sensitivity of deflection measurement in a typical microcantilever. This method can overcome the fundamental measurement sensitivity limit set by diffraction and pointing stability of laser beam in the widely used Optical Beam Deflection method (OBDM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent development of several organic materials with large nonlinear susceptibilities, high damage threshold and low melting points encouraged researchers to employ these materials in fiber form to efficiently couple diode laser pumps and obtain enhanced second harmonic generation (SHG). In this paper we report the growth of single crystal cored fibers of 4-nitro-4'-methylbenzylidene aniline, ethoxy methoxy chalcone and (-)2-((alpha) -methylbenzylamino)-5- nitropyridine by inverted Bridgman-Stockbarger technique. The fibers were grown in glass capillaries with varying internal diameters and lengths and were characterized using x-ray and polarizing microscope techniques. The propagation loss at 632.8 nm and 1300 nm were measured and SHG was studied using 1064 nm pump.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface melting by a stationary, pulsed laser has been modelled by the finite element method. The role of the surface tension driven convection is investigated in detail. Numerical results are presented for a triangular laser pulse of durations 10, 50 and 200 ms. Though the magnitude of the velocity is high due to the surface tension forces, the present results indicate that a finite time is required for convection to affect the temperature distribution within the melt pool. The effect of convection is very significant for pulse durations longer than 10 ms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photochromic, electrochromic and x-ray irradiation damages (commonly called the gray tracks) produced in KTiOPO4 single crystals have been studied using photoluminescence (PL) spectroscopy. Gray tracks were produced in this material by exposure to high laser powers (similar to MW/cm(2)), application of electric fields (similar to kV), and exposure to x rays (30 kV). The PL spectra recorded for such gray tracked samples at 4.2 K, exhibited a luminescence band in the 1-1.8 eV range with a peak at 1.41 eV. Temperature and excitation intensity dependence of PL peaks were carried out to probe the exact nature of the broad emission band in the gray tracked samples. The observed photoluminescence is attributed to transitions in the Ti3+ levels, created on irradiation. The microscopic effects produced in the crystal by electric field, optical field, and x rays are similar, as can be concluded from the similarity of PL spectra as well as their intensity and temperature dependences. (C) 1999 American Institute of Physics. [S0021-8979(99)04512-0].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films of ZnO, Li doped ZnO (ZLO) and multilayer of ZnO and ZLO (ZnO/ZLO) were grown on silicon and corning glass substrates by pulsed laser deposition technique. Single phase formation and the crystalline qualities of the films were analyzed by X-ray diffraction and Li composition in the film was investigated to be 15 wt% by X-ray photoelectron spectroscopy. Raman spectrum reveals the hexagonal wurtzite structure of ZnO, ZLO and ZnO/ZLO multilayer and confirms the single phase formation. Films grown on corning glass shows more than 80% transmittance in the visible region and the optical band gaps were calculated to be 3.245, 3.26 and 3.22 eV for ZnO, ZLO and ZnO/ZLO, respectively. An efficient blue emission was observed in all films which were grown on silicon (1 0 0) substrate by photoluminescence (PL). PL measurements at different temperatures reveal that the PL emission intensity of ZnO/ZLO multilayer was weakly dependent on temperature as compared to the single layers of ZnO and ZLO and the wavelength of emission was independent of temperature. Our results indicate that ZnO/ZLO multilayer can be used for the fabrication of blue light emitting diodes. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycine Phosphite [NH3CH2COOH3PO3], abbreviated as GPI, undergoes a para-ferroelectric phase transition from the monoclinic symmetry P2(1)/a to P2(1) at 224.7 K. We report here a systematic study of the polarization switching process in this crystal. Growth of these crystals from aqueous solution has been undertaken employing both solvent evaporation and slow cooling methods. Hysteresis loop measurements along the polar b-axis yielded a spontaneous polarization value of 0.5 muC/cm(2) and a coercive field of 2.5 kV/cm. Conventional Merz technique was employed for polarization switching studies, wherein bipolar square pulses were applied to the sample to induce domain reversal. The transient switching pulse that flows through the sample on application of the field was recorded. The maximum switching time required for domain switching was measured both as a function of electric field and temperature. The experimentally observed switching curves were fitted with the model based on the Pulvari-Kuebler theory of nucleation and growth of domains. From the experimental data, the values of mobility and activation field were obtained. It was observed that switching process in this crystal is predominantly governed by the forward growth of domain walls in the high field region. However, switching process in GPI crystal was found to be slower than that found in other glycine based ferroelectric crystals.