102 resultados para Ir catalysts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of oxides LnBaCuCoO(5) (Ln = Pr, Nd, Sm, Dy, Gd, Ho and Er) have been synthesized by ceramic method. The oxides crystallize in a tetragonal structure, isostructural to YBaCuCoO5. All the oxides in the series are semiconducting. IR spectra of these oxides show distinct absorption bands at 630 cm(-1), 550 cm(-1) and 330 cm(-1) which are assigned to E, A(2) and A(1) modes respectively. Doping of holes in these oxides, by calcium substitution in Er1-xCaxBaCuCoO5-x (up to x similar or equal to 0.3) was done but, these oxides did not show metallic behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxovanadium(IV) complexes VO(L)(B)](ClO4) (1-3) of N-2-pyridylmethylidine-2-hydroxyphenylamine (HL) Schiff base and phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido3,2-d: 2',3'-f] quinoxaline (dpq in 2) or dipyrido3,2-a: 2',3'-c] phenazine (dppz in 3), were prepared, characterized and their DNA binding property, photo-induced DNA cleavage activity and photocytotoxicity in HeLa cells studied. The crystal structure of 1 shows the presence of a VO2+ moiety in VO2N4 coordination geometry. The complexes show a d-d band at similar to 830 nm in DMF. The complexes display an oxidative V(V)-V(IV) response near 0.5 V versus SCE and a reductive V(IV)/V(III) response near -0.65 V in DMF -0.1 M TBAP. The complexes that are avid binders to CT DNA giving K-b values within 7.1 x 10(4) to 3.2 x 10(5) M-1, do not show any significant chemical nuclease activity in presence of 3-mercaptopropionic acid or glutathione. The dpq and dppz complexes are photocleavers of pUC19 DNA in UV-A light of 365 nm forming both O-1(2) and (OH)-O-center dot radicals and in near-IR light of 785 nm forming (OH)-O-center dot radicals. The dppz complex exhibits photocytotoxicity in visible light in HeLa cells (IC50 = 6.8 mu M). Flow-cytometric study on this complex shows a high sub-G1 phase in light compared to dark indicating PDT effect. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction of CH3OH with Cu clusters deposited on ZnO films grown on a Zn foil as well as on a ZnO(0001)Zn crystal, has been examined by X-ray photoelectron spectroscopy. On clean Cu clusters, reversible molecular adsorption or formation of CH3O is observed. However if the Cu clusters are pretreated with oxygen, both CH3O and HCOO- species are produced. Model Cu/ZnO catalyst surfaces, containing both Cu1+ and Cu-0 species, show interesting oxidation properties. On a Cu-0-rich catalyst surface, only CH3O species is formed on interaction with CH3OH. On a Cu1+-rich surface, however, HCOO- ion is the predominant species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A structural analysis of alkyl chain conformation of an intercalated cationic lipid bilayer is described. Dialkyl dimethylammonium ions (di-C(n)DA) were ion exchanged into the galleries of layered cadmium thiophosphate to give Cd0.83PS3(di-C(n)DA)(0.34). The grafting density and interlayer expansions were identical to those for the intercalated single chain alkyl trimethylammonium (C(n)TA) bilayers. The increased methylene chain density in the galleries, however, forces the intercalated lipid to adopt a more trans ordered structure. Progression bands arising from the coupling of vibrational modes of trans methylene units are used to establish the extent of trans registry. Two types of ordered structures of the intercalated cationic lipid may be distinguished. One in which both alkyl chains adopt an all-trans geometry, and one in which the methylene bond adjacent to the headgroup on one of the alkyl chains is gauche. The latter structure is typically found in the crystalline state of these cationic lipids. The concentrations of the two structures were determined from the ratio of the intensities of the progression bands and were found to remain unchanged with temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic oxidation and decomposition of NH3 have been carried out over combustion synthesized Al2O3 and CeO2 supported Pt, Pd and Ag catalysts using temperature programmed reaction (TPR) technique in a packed bed tubular reactor. Metals are ionically dispersed over CeO2 and fine metal particles are found on Al2O3. NH3 oxidation occurs over 1% Pt/Al2O3, 1% Pd/Al2O3 and 1% Ag/Al2O3 at 175, 270 and 350 C respectively producing N-2, NO, N2O and H2O, whereas 1% Pt/CeO2, 1% Pd/CeO2 and 1% Ag/CeO2 give N-2 along with NO, N2O and H2O at 200, 225 and 250degreesC respectively. N-2 predominates over other nitrogen-containing products during the reaction on all catalysts. At less O-2 concentration, N-2 and H2O are the only products obtained during NH3 Oxidation. NH3 decomposition over all the catalysts occurs above 450degreesC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and chemical environment of Cu in Cu/CeO2 catalysts synthesized by the solution combustion method have been investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron paramagnetic resonance (EPR) spectroscopy, X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and extended X-ray fine structure (EXAFS) spectroscopy. High-resolution XRD studies of 3 and 5 atom % Cu/CeO2 do not show CuO lines in their respective patterns. The structure could be refined for the composition Ce1-xCuxO2-delta (x = 0.03 and 0.05; delta similar to 0.13 and 0.16) in the fluorite structure with 5-8% oxide ion vacancy. High-resolution TEM did not show CuO particles in 5 atom % Cu/CeO2. EPR as well as XPS studies confirm the presence of Cu2+ species in the CeO2 matrix. Redox potentials of Cu species in the CeO2 matrix are lower than those in CuO. EXAFS investigations of these catalysts show an average coordination number of 3 around the Cu2+ ion in the first shell at a distance of 1.96 Angstrom, indicating the O2- ion vacancy around the Cu2+ ion. The Cu-O bond length also decreases compared to that in CuO. The second and third shell around the Cu2+ ion in the catalysts are attributed to -Cu2+-O2--Cu2+ - at 2.92 Angstrom and -Cu2+-O2--Ce4+- at the distance of 3.15 Angstrom, respectively. The present results provide direct evidence for the formation of a Ce1-xCuxO2-delta type of solid solution phase having -square-Cu2+-O-Ce4+- kind of linkages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the framework of a project aimed at developing a reliable hydrogen generator for mobile polymer electrolyte fuel cells (PEFCs), particular emphasis has been addressed to the analysis of catalysts able to assure high activity and stability in transient operations (frequent start-up and shut-down cycles). In this paper, the catalytic performance of 1 at.% Pt/ceria samples prepared by coprecipitation, impregnation and combustion, has been evaluated in the partial oxidation of methane. Methane conversion and hydrogen selectivity of 96 and 99%, respectively, associated with high stability during 100h of reaction under operative conditions (start-up and shut-down cycles), have been obtained. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In last 40 years, catalysis for NO (x) removal from exhaust gas has received much attention to achieve pollution free environment. CeO(2) has been found to play a major role in the area of exhaust catalysis due to its unique redox properties. In last several years, we have been exploring an entirely new approach of dispersing noble metal ions in CeO(2) and TiO(2) for redox catalysis. We have extensively studied Ce(1-x) M (x) O(2-delta) (M = Pd, Pt, Rh), Ce(1-x-y) A (x) M (y) O(2-delta) (A = Ti, Zr, Sn, Fe; M = Pd, Pt) and Ti(1-x) M (x) O(2-delta) (M = Pd, Pt, Rh, Ru) catalysts for exhaust catalysis especially NO reduction and CO oxidation, structure-property relation and mechanism of catalytic reactions. In these catalysts, lower valent noble metal ion substitution in CeO(2) and TiO(2) creates noble metal ionic sites and oxide ion vacancy. NO gets molecularly adsorbed on noble metal ion site and dissociatively adsorbed on oxide ion vacancy site. Dissociative chemisorption of NO on oxide ion vacancy leads to preferential conversion of NO to N(2) instead of N(2)O over these catalysts. It has been demonstrated that these new generation noble metal ionic catalysts (NMIC) are much more catalytically active than conventional nano crystalline noble metal catalysts especially for NO reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes produced by the treatment of Mg1−xMxAl2O4 (M = Fe, Co, or Ni; x = 0.1, 0.2, 0.3, or 0.4) spinels with an H2–CH4 mixture at 1070 °C have been investigated systematically. The grains of the oxide-metal composite particles are uniformly covered by a weblike network of carbon nanotube bundles, several tens of micrometers long, made up of single-wall nanotubes with a diameter close to 4 nm. Only the smallest metal particles (<5 nm) are involved in the formation of the nanotubes. A macroscopic characterization method involving surface area measurements and chemical analysis has been developed in order to compare the different nanotube specimens. An increase in the transition metal content of the catalyst yields more carbon nanotubes (up to a metal content of 10.0 wt% or x = 0.3), but causes a decrease in carbon quality. The best compromise is to use 6.7 wt% of metal (x = 0.2) in the catalyst. Co gives superior results with respect to both the quantity and quality of the nanotubes. In the case of Fe, the quality is notably hampered by the formation of Fe3C particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta) and Ce(0.67)Fe(0.33)O(2-delta) have been synthesized by a new low temperature sonochemical method using diethylenetriamine as a complexing agent. Due to the substitution of Fe and Pt ions in CeO(2), lattice oxygen is activated in Ce(0.67)Fe(0.33)O(2-delta) and Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta). Hydrogen uptake studies show strong reduction peaks at 125 C in Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta) against a hydrogen uptake peak at 420 degrees C in Ce(0.67)Fe(0.33)O(2-delta). Fe substituted ceria, Ce(0.67)Fe(0.33)O(2-delta) itself acts as a catalyst for CO oxidation and water gas shift (WGS) reactions at moderate temperatures. The rate of CO conversion in WGS with Pt free Ce(0.65)Fe(0.33)O(2-delta) is 2.8 mu mol g(-1) s(-1) at 450 C and with Pt substituted Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta) is 4.05 mu mol g(-1) s(-1) at 275 degrees C. Due to the synergistic interaction of the Pt ion with Ce and Fe ions in Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta), the catalyst showed much higher activity for CO oxidation and WGS reactions compared to Ce(0.67)Fe(0.33)O(2-delta). A reverse WGS reaction does not occur over Ce(0.65)Fe(0.33)Pt(0.02)O(2-delta). The catalyst also does not deactivate even when operated for a long time. Nearly 100% conversion of CO to CO(2) with 100% H(2) selectivity is observed in WGS reactions even up to 550 degrees C. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced composite structural components made up of Carbon Fibre Reinforced Polymers (CFRP) used in aerospace structures such as in Fuselage, Leading & Trailing edges of wing and tail, Flaps, Elevator, Rudder and entire wing structures encounter most critical type of damage induced by low velocity impact (<10 m/s) loads. Tool dropped during maintenance & service,and hailstone impacts on runways are common and unavoidable low-velocity impacts. These lowvelocity impacts induce defects such as delaminations, matrix cracking and debonding in the layered material, which are sub-surface in nature and are barely visible on the surface known as Barely Visible Impact Damage (BVID). These damages may grow under service load, leading to catastrophic failure of the structure. Hence detection, evaluation and characterization of these types of damage is of major concern in aerospace industries as the life of the component depends on the size and shape of the damage.In this paper, details of experimental investigations carried out and results obtained from a low-velocity impact of 30 Joules corresponding to the hailstone impact on the wing surface,simulated on the 6 mm CFRP laminates using instrumented drop-weight impact testing machine are presented. The Ultrasound C-scan and Infrared thermography imaging techniques were utilized extensively to detect, evaluate and characterize impact damage across the thickness of the laminates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microwave-based methods are widely employed to synthesize metal nanoparticles on various substrates. However, the detailed mechanism of formation of such hybrids has not been addressed. In this paper, we describe the thermodynamic and kinetic aspects of reduction of metal salts by ethylene glycol under microwave heating conditions. On the basis of this analysis, we identify the temperatures above which the reduction of the metal salt is thermodynamically favorable and temperatures above which the rates of homogeneous nucleation of the metal and the heterogeneous nucleation of the metal on supports are favored. We delineate different conditions which favor the heterogeneous nucleation of the metal on the supports over homogeneous nucleation in the solvent medium based on the dielectric loss parameters of the solvent and the support and the metal/solvent and metal/support interfacial energies. Contrary to current understanding, we show that metal particles can be selectively formed on the substrate even under situations where the temperature of the substrate Is lower than that of the surrounding medium. The catalytic activity of the Pt/CeO(2) and Pt/TiO(2) hybrids synthesized by this method for H(2) combustion reaction shows that complete conversion is achieved at temperatures as low as 100 degrees C with Pt-CeO(2) catalyst and at 50 degrees C with Pt-TiO(2) catalyst. Our method thus opens up possibilities for rational synthesis of high-activity supported catalysts using a fast microwave-based reduction method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new design for the solid-state cell incorporating a buffer electrode for high-temperature thermodynamic measurements is presented. The function of the buffer electrode, placed between the reference and working electrodes, is to absorb the electrochemical flux of the mobile species through the solid electrolyte caused by trace electronic conductivity. The buffer electrode prevents polarization of the measuring electrode and ensures accurate data. The application of this novel design and its advantages are demonstrated by measurement of the standard Gibbs energies of formation of Nd6Ir2O13 (low-temperature form) and Nd2Ir2O7 in the temperature range from 975 to 1450 K. Yttria-stabilized zirconia is used as the solid electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode. For the design of appropriate working electrodes, phase relations in the ternary system NdIrO were investigated at 1350 K. The two ternary oxides, Nd6Ir2O13 and Nd2Ir2O7, compositions of which fall on the join Nd2O3IrO2, were found to coexist with pure metal Ir. Therefore, two working electrodes were prepared consisting of mixtures of Ir+Nd2O3+Nd6Ir2O13 and Ir+Nd6Ir2O13+ Nd2Ir2O7. These mixtures unambiguously define unique oxygen chemical potentials under isothermal and isobaric conditions. The standard Gibbs energies of formation (ΔG°f (ox)) of the compounds from their component binary oxides Nd2O3 and IrO2, obtained from the emf of the cells, can be represented by the equations:View the MathML source View the MathML source Based on the thermodynamic information, chemical potential diagrams for the system NdIrO are developed.