69 resultados para Interannual Variability
Resumo:
Long-distance dispersal (LDD) events, although rare for most plant species, can strongly influence population and community dynamics. Animals function as a key biotic vector of seeds and thus, a mechanistic and quantitative understanding of how individual animal behaviors scale to dispersal patterns at different spatial scales is a question of critical importance from both basic and applied perspectives. Using a diffusion-theory based analytical approach for a wide range of animal movement and seed transportation patterns, we show that the scale (a measure of local dispersal) of the seed dispersal kernel increases with the organisms' rate of movement and mean seed retention time. We reveal that variations in seed retention time is a key determinant of various measures of LDD such as kurtosis (or shape) of the kernel, thinkness of tails and the absolute number of seeds falling beyond a threshold distance. Using empirical data sets of frugivores, we illustrate the importance of variability in retention times for predicting the key disperser species that influence LDD. Our study makes testable predictions linking animal movement behaviors and gut retention times to dispersal patterns and, more generally, highlights the potential importance of animal behavioral variability for the LDD of seeds.
Resumo:
All major rivers in Bhutan depend on snowmelt for discharge. Therefore, changes in snow cover due to climate change can influence distribution and availability of water. However, information about distribution of seasonal snow cover in Bhutan is not available. The MODIS snow product was used to study snow cover status and trends in Bhutan. Average snow cover area (SCA) of Bhutan estimated for the period 2002 to 2010 was 9030 sq. km, about 25.5% of the total land area. SCA trend of Bhutan for the period 2002-2010 was found to decrease (-3.27 +/- 1.28%). The average SCA for winter was 14,485 sq. km (37.7%), for spring 7411 sq. km (19.3%), for summer 4326 sq. km (11.2%), and for autumn 7788 sq. km (20.2%), mostly distributed in the elevation range 2500-6000 m amsl. Interannual and seasonal SCA trend both showed a decline, although it was not statistically significant for all sub-basins. Pho Chu sub-basin with 19.5% of the total average SCA had the highest average SCA. The rate of increase of SCA for every 100 m elevation was the highest (2.5%) in the Pa Chu sub-basin. The coefficient of variance of 1.27 indicates high variability of SCA in winter.
Resumo:
During summer, the northern Indian Ocean exhibits significant atmospheric intraseasonal variability associated with active and break phases of the monsoon in the 30-90 days band. In this paper, we investigate mechanisms of the Sea Surface Temperature (SST) signature of this atmospheric variability, using a combination of observational datasets and Ocean General Circulation Model sensitivity experiments. In addition to the previously-reported intraseasonal SST signature in the Bay of Bengal, observations show clear SST signals in the Arabian Sea related to the active/break cycle of the monsoon. As the atmospheric intraseasonal oscillation moves northward, SST variations appear first at the southern tip of India (day 0), then in the Somali upwelling region (day 10), northern Bay of Bengal (day 19) and finally in the Oman upwelling region (day 23). The Bay of Bengal and Oman signals are most clearly associated with the monsoon active/break index, whereas the relationship with signals near Somali upwelling and the southern tip of India is weaker. In agreement with previous studies, we find that heat flux variations drive most of the intraseasonal SST variability in the Bay of Bengal, both in our model (regression coefficient, 0.9, against similar to 0.25 for wind stress) and in observations (0.8 regression coefficient); similar to 60% of the heat flux variation is due do shortwave radiation and similar to 40% due to latent heat flux. On the other hand, both observations and model results indicate a prominent role of dynamical oceanic processes in the Arabian Sea. Wind-stress variations force about 70-100% of SST intraseasonal variations in the Arabian Sea, through modulation of oceanic processes (entrainment, mixing, Ekman pumping, lateral advection). Our similar to 100 km resolution model suggests that internal oceanic variability (i.e. eddies) contributes substantially to intraseasonal variability at small-scale in the Somali upwelling region, but does not contribute to large-scale intraseasonal SST variability due to its small spatial scale and random phase relation to the active-break monsoon cycle. The effect of oceanic eddies; however, remains to be explored at a higher spatial resolution.
Resumo:
South peninsular India experiences a large portion of the annual rainfall during the northeast monsoon season (October to December). In this study, the facets of diurnal, intra-seasonal and inter-annual variability of the northeast monsoon rainfall (the NEMR) over India have been examined. The analysis of satellite derived hourly rainfall reveals that there are distinct features of diurnal variation over the land and oceans during the season. Over the land, rainfall peaks during the late afternoon/evening, while over the oceans an early morning peak is observed. The harmonic analysis of hourly data reveals that the amplitude and variance are the largest over south peninsular India. The NEMR also exhibits significant intra-seasonal variability on a 20-40 day time scale. Analysis also shows significant northward propagation of the maximum cloud zone from south of equator to the south peninsula during the season. The NEMR exhibits large inter-annual variability with the co-efficient of variation (CV) of 25%. The positive phases of ENSO and the Indian Ocean Dipole (IOD) are conducive for normal to above normal rainfall activity during the northeast monsoon. There are multi-decadal variations in the statistical relationship between ENSO and the NEMR. During the period 2001-2010 the statistical relationship between ENSO and the NEMR has significantly weakened. The analysis of seasonal rainfall hindcasts for the period 1960-2005 produced by the state-of-the-art coupled climate models, ENSEMBLES, reveals that the coupled models have very poor skill in predicting the inter-annual variability of the NEMR. This is mainly due to the inability of the ENSEMBLES models to simulate the positive relationship between ENSO and the NEMR correctly. Copyright (C) 2012 Royal Meteorological Society
Resumo:
We report Si-isotopic compositions of 75 sedimentologically and petrographically characterized chert samples with ages ranging from similar to 2600 to 750 Ma using multi-collector inductively coupled plasma mass spectrometry. delta Si-30 values of the cherts analyzed in this study show a similar to 7 parts per thousand range, from -4.29 to +2.85. This variability can be explained in part by (1) simple mixing of silica derived from continental (higher delta Si-30) and hydrothermal (lower delta Si-30) sources, (2) multiple mechanisms of silica precipitation and (3) Rayleigh-type fractionations within pore waters of individual basins. We observe similar to 3 parts per thousand variation in peritidal cherts from a single Neoproterozoic sedimentary basin (Spitsbergen). This variation can be explained by Rayleigh-type fractionation during precipitation from silica-saturated porewaters. In some samples, post-dissolution and reprecipitation of silica could have added to this effect. Our data also indicate that peritidal cherts are enriched in the heavier isotopes of Si whereas basinal cherts associated with banded iron formations (BIF) show lower delta Si-30. This difference could partly be due to Si being derived from hydrothermal sources in BIFs. We postulate that the difference in delta Si-30 between non-BIF and BIF cherts is consistent with the contrasting genesis of these deposits. Low delta Si-30 in BIF is consistent with laboratory experiments showing that silica adsorbed onto Fe-hydroxide particles preferentially incorporates lighter Si isotopes. Despite large intrabasinal variation and environmental differences, the data show a clear pattern of secular variation. Low delta Si-30 in Archean cherts is consistent with a dominantly hydrothermal source of silica to the oceans at that time. The monotonically increasing delta Si-30 from 3.8 to 1.5 Ga appears to reflect a general increase in continental versus hydrothermal sources of Si in seawater, as well as the preferential removal of lighter Si isotopes during silica precipitation in iron-associated cherts from silica-saturated seawater. The highest delta Si-30 values are observed in 1.5 Ga peritidal cherts; in part, these enriched values could reflect increasing sequestration of light silica during soil-forming processes, thus, delivering relatively heavy dissolved silica to the oceans from continental sources. The causes behind the reversal in trend towards lower delta Si-30 in cherts younger than 1.5 Ga old are less clear. Cherts deposited 1800-1900 Ma are especially low delta Si-30, a possible indication of transiently strong hydrothermal input at this time. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The impact of gate-to-source/drain overlap length on performance and variability of 65 nm CMOS is presented. The device and circuit variability is investigated as a function of three significant process parameters, namely gate length, gate oxide thickness, and halo dose. The comparison is made with three different values of gate-to-source/drain overlap length namely 5 nm, 0 nm, and -5 nm and at two different leakage currents of 10 nA and 100 nA. The Worst-Case-Analysis approach is used to study the inverter delay fluctuations at the process corners. The drive current of the device for device robustness and stage delay of an inverter for circuit robustness are taken as performance metrics. The design trade-off between performance and variability is demonstrated both at the device level and circuit level. It is shown that larger overlap length leads to better performance, while smaller overlap length results in better variability. Performance trades with variability as overlap length is varied. An optimal value of overlap length of 0 nm is recommended at 65 nm gate length, for a reasonable combination of performance and variability.
Resumo:
With the rapid scaling down of the semiconductor process technology, the process variation aware circuit design has become essential today. Several statistical models have been proposed to deal with the process variation. We propose an accurate BSIM model for handling variability in 45nm CMOS technology. The MOSFET is designed to meet the specification of low standby power technology of International Technology Roadmap for Semiconductors (ITRS).The process parameters variation of annealing temperature, oxide thickness, halo dose and title angle of halo implant are considered for the model development. One parameter variation at a time is considered for developing the model. The model validation is done by performance matching with device simulation results and reported error is less than 10%.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
Certain parts of the State of Nagaland situated in the northeastern region of India have been experiencing rainfall deficit over the past few years leading to severe drought-like conditions, which is likely to be aggravated under a climate change scenario. The state has already incurred considerable losses in the agricultural sector. Regional vulnerability assessments need to be carried out in order to help policy makers and planners formulate and implement effective drought management strategies. The present study uses an 'index-based approach' to quantify the climate variability-induced vulnerability of farmers in five villages of Dimapur district, Nagaland. Indicators, which are reflective of the exposure, sensitivity and adaptive capacity of the farmers to drought, were quantified on the basis of primary data generated through household surveys and participatory rural appraisal supplemented by secondary data in order to calculate a composite vulnerability index. The composite vulnerability index of village New Showba was found to be the least, while Zutovi, the highest. The overall results reveal that biophysical characteristics contribute the most to overall vulnerability. Some potential adaptation strategies were also identified based on observations and discussions with the villagers.
Resumo:
Intraseasonal time-scales play an important role in tropical variability. Two modes that contribute significantly to tropical intraseasonal variability (ISV) are the eastward-propagating MaddenJulian Oscillation (MJO), and westward-moving moist equatorial Rossby waves. This note reports on a correspondence between the longitudinal gradient of mean tropical precipitable water (PW), and the geographical regions of genesis, and convective activity, of both these large-scale tropical systems. Our finding is based on an analysis of PW from the MERRA reanalysis product. The data indicate that the mean tropical PW has a dominant wavenumber two (three) structure in longitude in the Northern (Southern) Hemisphere. Departures from a longitudinally homogeneous state are attributed to the influence of subtropical anticyclones, and are accentuated by monsoonal regions of both hemispheres. This mean structure results in a sharply localized longitudinal gradient of PW. Remarkably, regions with positive gradients (such as the Northern and Southern Hemisphere western Indian Ocean), i.e. they have larger PW to the east, are the very zones that are implicated in the formation, and show high levels of convective activity, of the eastward-moving MJO. On the other hand, regions with negative gradients (such as the Southern Hemisphere central Pacific) are the very regions where genesis, and maxima in variance, of westward-moving moist equatorial Rossby waves are known to occur. Apart from providing a first-order longitudinal footprint of the convective phase of these systems, this correspondence reinforces the role of the mean climatic state in tropical ISV. Copyright (c) 2012 Royal Meteorological Society
Resumo:
Stable isotopes from a U/Th dated aragonite stalagmite from the Central Kumaun Himalaya provide evidence of variation in climatic conditions in the last similar to 1800 years. The delta O-18 and delta C-13 values vary from -4.3 parts per thousand to -7.6 parts per thousand and -3.4 parts per thousand to -9.1 parts per thousand respectively, although the stalagmite was not grown in isotopic equilibrium with cave drip water, a clear palaeoclimatic signal in stalagmite delta O-18 values is evident based on the regional climate data. The stalagmite showed a rapid growth rate during 830-910 AD, most likely the lower part of Medieval Warm Period (MWP), and 1600-1640 AD, the middle part of Little Ice Age (LIA). Two distinct phases of reduced precipitation are marked by a 2 parts per thousand shift in 8180 values towards the end of MWP (similar to 1080-1160 AD) and after its termination from similar to 1210 to 1440 AD. The LIA (similar to 1440-1880 AD) is represented by sub-tropical climate similar to modern conditions, whereas the post-LIA was comparatively drier. The Inter Tropical Convergence Zone (ITCZ) was located over the cave location during wetter/warmer conditions. When it shifted southward, precipitation over the study area decreased. A prominent drop in delta O-18 and delta C-13 values during the post-LIA period may also have been additionally influenced by anthropogenic activity in the area. (C) 2013 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
Seasonal rainfall patterns in Bangalore, India, have been reconstructed using stable isotopic ratios in the growth bands of Giant African Land Snail shells. The present study was conducted at Bangalore, India which receives rain during the summer months. The oxygen isotopic record in the rainwater samples collected during different months covering the period of the summer monsoon of the year 2008 is compared with the isotopic ratio in the gastropod growth bands deposited simultaneously. The chronology of the shell growth band is independently established assuming the growth rate observed in a chamber experiment maintaining similar relative humidity and temperature conditions. A consistent pattern observed in the isotopic ratio in the gastropod growth bands and rainwater is demonstrated and provides a novel approach for precipitation reconstruction at seasonal and weekly time scales. This approach of using isotopic ratios in the gastropod growth bands for rainfall can serve as a substitute for filling gaps in rainfall data and for cases where no rain records are available. In addition, they can be used to determine the frequencies and magnitudes of dry spells from the past records. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Variable Endmember Constrained Least Square (VECLS) technique is proposed to account endmember variability in the linear mixture model by incorporating the variance for each class, the signals of which varies from pixel to pixel due to change in urban land cover (LC) structures. VECLS is first tested with a computer simulated three class endmember considering four bands having small, medium and large variability with three different spatial resolutions. The technique is next validated with real datasets of IKONOS, Landsat ETM+ and MODIS. The results show that correlation between actual and estimated proportion is higher by an average of 0.25 for the artificial datasets compared to a situation where variability is not considered. With IKONOS, Landsat ETM+ and MODIS data, the average correlation increased by 0.15 for 2 and 3 classes and by 0.19 for 4 classes, when compared to single endmember per class. (C) 2013 COSPAR. Published by Elsevier Ltd. All rights reserved.