48 resultados para Incomplete relational database


Relevância:

20.00% 20.00%

Publicador:

Resumo:

NrichD ( ext-link-type=''uri'' xlink:href=''http://proline.biochem.iisc.ernet.in/NRICHD/'' xlink:type=''simple''>http://proline.biochem.iisc.ernet.in/NRICHD/)< /named-content> is a database of computationally designed protein-like sequences, augmented into natural sequence databases that can perform hops in protein sequence space to assist in the detection of remote relationships. Establishing protein relationships in the absence of structural evidence or natural `intermediately related sequences' is a challenging task. Recently, we have demonstrated that the computational design of artificial intermediary sequences/linkers is an effective approach to fill naturally occurring voids in protein sequence space. Through a large-scale assessment we have demonstrated that such sequences can be plugged into commonly employed search databases to improve the performance of routinely used sequence search methods in detecting remote relationships. Since it is anticipated that such data sets will be employed to establish protein relationships, two databases that have already captured these relationships at the structural and functional domain level, namely, the SCOP database and the Pfam database, have been `enriched' with these artificial intermediary sequences. NrichD database currently contains 3 611 010 artificial sequences that have been generated between 27 882 pairs of families from 374 SCOP folds. The data sets are freely available for download. Additional features include the design of artificial sequences between any two protein families of interest to the user.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facial emotions are the most expressive way to display emotions. Many algorithms have been proposed which employ a particular set of people (usually a database) to both train and test their model. This paper focuses on the challenging task of database independent emotion recognition, which is a generalized case of subject-independent emotion recognition. The emotion recognition system employed in this work is a Meta-Cognitive Neuro-Fuzzy Inference System (McFIS). McFIS has two components, a neuro-fuzzy inference system, which is the cognitive component and a self-regulatory learning mechanism, which is the meta-cognitive component. The meta-cognitive component, monitors the knowledge in the neuro-fuzzy inference system and decides on what-to-learn, when-to-learn and how-to-learn the training samples, efficiently. For each sample, the McFIS decides whether to delete the sample without being learnt, use it to add/prune or update the network parameter or reserve it for future use. This helps the network avoid over-training and as a result improve its generalization performance over untrained databases. In this study, we extract pixel based emotion features from well-known (Japanese Female Facial Expression) JAFFE and (Taiwanese Female Expression Image) TFEID database. Two sets of experiment are conducted. First, we study the individual performance of both databases on McFIS based on 5-fold cross validation study. Next, in order to study the generalization performance, McFIS trained on JAFFE database is tested on TFEID and vice-versa. The performance The performance comparison in both experiments against SVNI classifier gives promising results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustering techniques which can handle incomplete data have become increasingly important due to varied applications in marketing research, medical diagnosis and survey data analysis. Existing techniques cope up with missing values either by using data modification/imputation or by partial distance computation, often unreliable depending on the number of features available. In this paper, we propose a novel approach for clustering data with missing values, which performs the task by Symmetric Non-Negative Matrix Factorization (SNMF) of a complete pair-wise similarity matrix, computed from the given incomplete data. To accomplish this, we define a novel similarity measure based on Average Overlap similarity metric which can effectively handle missing values without modification of data. Further, the similarity measure is more reliable than partial distances and inherently possesses the properties required to perform SNMF. The experimental evaluation on real world datasets demonstrates that the proposed approach is efficient, scalable and shows significantly better performance compared to the existing techniques.