129 resultados para IEA-R1 REACTOR
Resumo:
Vapour phase oxidation of anthracene over cobalt molybdate catalyst was investigated in an isothermal flow reactor in the temperature range of 280—340°C. Fifteen different models based on redox, Langmuir—Hinshelwood and Rideal mechanisms were tested in order to elucidate the mechanism of the above reaction. These models were compared on the basis of three criteria and were finally discriminated employing the non-intrinsic parameter method. Two-stage redox mechanism was found to explain the data satisfactorily.
Resumo:
Unambiguous synthesis of 2-methyl-3-isopropenylanisole (Image ) and 2-isopropenyl-3-methylanisole (Image ) has led to revision, from (Image ) to (Image ), of the structure assigned to a monoterpene phenol ether isolated from
Resumo:
Continuous slurry reactor runs of two to four weeks duration were carried out for catalyzed air oxidation of thiosalts under a variety of conditions using poly (4-vinylpyridine) - Cu (II) and quaternized poly (4-vinylpyridine) - Cu (II) catalysts. Results obtained indicate that these catalysts have high activity and relatively long-term catalyst stability for thiosalt waste streams of < 1000 ppm thiosalt level. Using 2% (w/w) slurries of the poly (4-vinylpyridine) Cu (II) catalyst, effective oxidation of 700 ppm S2O32− influent to an effluent of < 100 ppm total thio-salts can be carried out continuously for at least one month when operating at 20 to 30°C with solution flow rates of$˜1l/h and aeration of 1300 XXX/h using a two-stage reactor system comprised of 12 l reactors. At higher thiosalt influent levels (i.e. > 1600 ppm) increased reaction temperatures enable depletion to < 100 ppm thiosalt effluent levels for up to one week of continuous operation. The catalysts deactivate much more readily at these higher influent levels as a result of greater copper losses and appreciable adsorption of S2O32− and S4O62−. The behaviour of continuous slurry reactors employed in the experimental studies, by use of batch reaction data for the poly (4-vinylpyridine) Cu (II) catalyzed oxidation of thiosalts, can be modelled successfully. Quaternized poly (4-vinylpyridine) Cu (II) catalyst has good long-term stability and copper losses are very low. The poly (4-vinylpyridine) Cu (II) catalyst, however, is susceptible to appreciable oxidation of the polymer matrix on long-term usage. This oxidation of the polymer matrix results in a substantial loss in the activity of the regenerated catalyst.
Resumo:
Ethanol oxidation in the vapor phase was studied in an isothermal flow reactor using thorium molybdate catalyst in the temperature range 220–280 °C. Under these conditions the catalyst was highly selective to acetaldehyde formation. The rate data were well represented by a steady state two-stage redox model given by the equation: View the MathML source The parameters of the above model were estimated by linear and nonlinear least squares methods. In the case of nonlinear estimation the sum of the squares of residuals decreased. The activation energies and preexponential factors for the reduction and oxidation steps of the model, estimated by nonlinear least squares technique are: 9.47 kcal/mole, 9.31 g mole/ (sec) (g cat) (atm) and 9.85 kcal/mole, 0.17 g mole/(sec) (g cat) (atm)0.5, respectively. Oxidations of ethanol and methanol over thorium molybdate catalyst were compared under similar conditions.
Resumo:
A rate equation is developed for the liquid-phase oxidation of propionaldehyde with oxygen in the presence of manganese propionate catalyst in a sparged reactor. The equation takes into account diffusional limitations based on Brian's solution for mass transfer accompanied by a pseudo m-. nth-order reaction. Sauter-mean bubble diameter, gas holdup, interfacial area, and bubble rise velocity are measured, and rates of mass transfer within the gas phase and across the gas-liquid interface are computed. Statistically designed experiments show the adequacy of the equation. The oxidation reaction is zero order with respect to oxygen concentration, 3/2 order with respect to aldehyde concentration, and order with respect to catalyst concentration. The activation energy is 12.1 kcal/g mole.
Resumo:
Rates of oxidation of p-xylene were measured in the temperature range 320 to 420 °C using tin vanadate as catalyst in an isothermal differential flow reactor. The amounts of p-xylene converted were determined by analyzing the main products (p-tolualdehyde, maleic anhydride, p-toluic acid and traces of terephthalic acid). Negligible amounts of products of complete combustion were formed. The reaction rates obtained for p-xylene followed the relation, Image based on the redox model. The mechanism of the reaction was determined by conducting different sets of experiments and it was found that the reaction followed the parallel-consecutive mechanism, in which p-tolualdehyde and maleic anhydride were formed from the parallel route whereas p-toluic acid was formed from the consecutive route.
Resumo:
Using the critical percolation conductance method the energy-dependent diffusion coefficient associated with thermally assisted transfer of the R1 line excitation between single Cr3+ ions with strain-induced randomness has been calculated in the 4A2 to E(2E) transition energies. For localized states sufficiently far away from the mobility edge the energy transfer is dominated by dipolar interactions, while very close to the mobility edge it is determined by short-range exchange interactions. Using the above energy-dependent diffusion coefficient a macroscopic diffusion equation is solved for the rate of light emission by Cr3+ ion-pair traps to which single-ion excitations are transferred. The dipolar mechanism leads to good agreement with recent measurements of the pair emission rate by Koo et al. (Phys. Rev. Lett., vol.35, p.1669 (1975)) right up to the mobility edge.
Resumo:
This paper describes a simple technique for the fermentation of untreated or partly-treated leafy biomass in a digester of novel design without incurring the normal problems of feeding, floating and scum formation of feed, etc. The solid phase fermentation studied consists of a bed of biomass frequently sprinkled with an aqueous bacterial inoculum and recycling the leachate to conserve moisture and improve the bacterial dispersion in the bed. The decomposition of the leaf biomass and water hyacinth substrates used in this study was rapid, taking 45 and 30 days for the production of 250 and 235 l biogas per kg total solids (TS) respectively, for the above mentioned substrates at a daily sprinkled volume of 26 ml cm−2 of bed per day sprinkled at 12 h intervals. Very little volatile fatty acid (VFA) intermediates accumulated in the liquid sprinkled, suggesting acidogenesis to be rate-limiting in this process. From the pattern of VFA and gas produced it is concluded that most of the biogas produced is from the biomass bed, thus making the operation of a separate methanogenic reactor unnecessary.
Resumo:
Various carbon nanostructures (CNs) have been prepared by a simple deposition technique based on the pyrolysis of a new carbon source material tetrahydrofuran (THF) mixed with ferrocene using quartz tube reactor in the temperature range 700-1100 degrees C. A detailed study of how the synthesis parameter such as growth temperature affects the morphology of the carbon nanostructures is presented. The obtained CNs are investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), electron dispersive scattering (EDS)thermogravimetry analysis (TGA), Raman and transmission electron microscope (TEM). It is observed that at 700 degrees C. normal CNTs are formed. Iron filled multi-walled carbon nanotubes (MWCNTs) and carbon nanoribbons (CNRs) are formed at 950 degrees C. Magnetic characterization of iron filled MWCNTs and CNRs studied at 300 K by superconducting quantum interference device (SQUID) reveals that these nanostructures have an enhanced coercivity (Hc = 1049 Oe) higher than that of bulk Fe. The large shape anisotropy of MWCNTs, which act on the encapsulated material (Fe), is attributed for the contribution of the higher coercivity. Coiled carbon nanotubes (CCNTs) were obtained as main products in large quantities at temperature 1100 degrees C.
Resumo:
Neutral and cationic organometallic ruthenium(II) piano stool complexes of the type [(eta(6)-cymene)R-uCl(X)(Y)] (complexes R1-R8) has been synthesized and characterized. In cationic complexes, X, Y is either a eta(2) phosphorus ligand such as 1,1-bis(diphenylphosphino)methane (DPPM) and 1,2-bis(diphenylphosphino)ethane (DPPE) or partially oxidized ligands such as 1,2-bis(diphenylphosphino)methane monooxide (DPPMO) and 1,2-bis(diphenylphosphino)ethane monooxide (DPPEO) which are strong hydrogen bond acceptors. In neutral complexes. X is chloride and Y is a monodentate phosphorous donor. Complexes with DPPM and DPPMO ligands ([(eta(6)-cymene)Ru(eta(2)-DPPM)Cl]PF6 (R2), [(eta(6)-cymene)Ru(eta(2)-DPPMO)Cl]PF6 (R3), [(eta(6)-cymene)Ru(eta(1)-DPPM)Cl-2] (R5) and [(eta(6)-cymene)Ru(eta(1)-DPPMO)Cl-2] (R6) show good cytotoxicity. Growth inhibition study of several human cancer cell lines by these complexes has been carried out. Mechanistic studies for R5 and R6 show that inhibition of cancer cell growth involves both cell cycle arrest and apoptosis induction. Using an apoptosis PCR array, we identified the sets of antiapoptotic genes that were down regulated and pro-apoptotic genes that were up regulated. These complexes were also found to be potent metastasis inhibitors as they prevented cell invasion through matrigel. The complexes were shown to bind DNA in a non intercalative fashion and cause unwinding of plasmid DNA in cell-free medium by competitive ethidium bromide binding, viscosity measurements, thermal denaturation and gel mobility shift assays.
Resumo:
Microbiological quality of the treated wastewater is an important parameter for its reuse. The data oil the Fecal Coliform (FC) and Fecal Streptococcus (FS) at different stages of treatment in the Sewage Treatment Plants (STPs) in Delhi watershed is not available, therefore in the present study microbial profiling of STPs was carried out to assess the effluent quality for present and future reuse options. This Study further evaluates the water quality profiles at different stages of treatment for 16 STPs in Delhi city. These STPs are based on conventional Activated Sludge Process (ASP), extended aeration, physical, chemical and biological treatment (BIOFORE), Trickling Filter and Oxidation Pond. The primary effluent quality produced from most of the STPs was suitable for Soil Aquifer Treatment (SAT). Extended Hydraulic Retention Time (HRT) as a result Of low inflow to the STPS Was responsible for high turbidity, COD and BODs removal. Conventional ASP based STPs achieved 1.66 log FC and 1.06 log FS removal. STPs with extended aeration treatment process produced better quality effluent with maximum 4 log order reduction in FC and FS levels. ``Kondli'' and ``Nilothi'' STPs employing ASP, produced better quality secondary effluent as compared to other STPs based oil similar treatment process. Oxidation Pond based STPs showed better FC and FS removals, whereas good physiochemical quality was achieved during the first half of the treatment. Based upon physical, chemical and microbiological removal efficiencies, actual integrated efficiency (IEa) of each STP was determined to evaluate its Suitability for reuse for irrigation purposes. Except Mehrauli'' and ``Oxidation Pond'', effluents from all other STPs require tertiary treatment for further reuse. Possible reuse options, depending Upon the geographical location, proximity of facilities of potential users based oil the beneficial uses, and sub-soil types, etc. for the Delhi city have been investigated, which include artificial groundwater recharge, aquaculture, horticulture and industrial uses Such as floor washing, boiler feed, and cooling towers, etc. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Raffinose oligosaccharides (RO) are the major factors responsible for flatulence following ingestion of soybean-derived products. Removal of RO from seeds or soymilk would then have a positive impact on the acceptance of soy-based foods. In this study, alpha-galactosidase from Aspergillus oryzae was entrapped in gelatin using formaldehyde as the hardener. The immobilization yield was 64.3% under the optimum conditions of immobilization. The immobilized alpha-galactosidase showed a shift in optimum pH from 4.8 to 5.4 in acetate buffer. The optimum temperature also shifted from 50 degrees C to 57 degrees C compared with soluble enzyme. Immobilized alpha-galactosidase was used in batch, repeated batch and continuous mode to degrade RO present in soymilk. In the repeated batch, 45% reduction of RO was obtained in the fourth cycle. The performance of immobilized alpha-galactosidase was tested in a fluidized bed reactor at different flow rates and 86% reduction of RO in soymilk was obtained at 25 ml h(-1) flow rate. The study revealed that immobilized alpha-galactosidase in continuous mode is efficient in reduction of RO present in soymilk.
Resumo:
The vapor phase hydrochlorination of methanol to methyl chloride in fixed beds with silica gel-alumina (88 to 12) and γ-alumina catalysts was studied in a glass tubular reactor in the temperature range of 300° to 390°C. Of the two catalysts studied, γ-alumina gave nearly equilibrium conversions under the experimental conditions. The data are expressed in the form of second-order irreversible rate equations for both the catalysts studied.
Resumo:
Thiosemicarbazones are having the ability to bind with metal and inhibit the enzyme ribonucleoside diphosphate reductase(RDR),an enzyme which is involved in the synthesis of DNA precursors in the mammalian cells.The title compound N-methyl-t-3-methyl-r-2, c-6-diphenylpiperidin-4-one thiosemicarbazone (NMMDPT), CCDC 218052, was prepared using Mannich reaction and characterized by X-ray diffraction methods.The crystal data are:C20H24N4S; M.W= 352.49, triclinic,space group P (1) over bar, a = 8.467(2)angstrom, b = 10.228(2)angstrom, c = 12.249(2)angstrom; lpha=92.595(3)degrees, beta=104.173(3)degrees, gamma=13.628(3)degrees; V=930.0(3)angstrom(3), Z=2, D-cal=1.259Mgm(-3),mu=0.184mm(-1),lambda (MoKalpha)=0.71073 angstrom, final R1 and wR2 are 0.0470 and 0.1052, respectively. The piperidine rings adopt chair conformation. The planar phenyl rings are oriented equatorially at 2,6-positions of the piperidine ring. The molecular packing can be viewed as dimers held together by two N-H...S types of intermolecular hydrogen bonds. Weak C-H...pi interactions also support the stability of the molecules in the crystal in addition to van der Waals forces. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
A completely automated temperature-programmed reaction (TPR) system for carrying out gas-solid catalytic reactions under atmospheric flow conditions is fabricated to study CO and hydrocarbon oxidation, and NO reduction. The system consists of an all-stainless steel UHV system, quadrupole mass spectrometer SX200 (VG Scientific), a tubular furnace and micro-reactor, a temperature controller, a versatile gas handling system, and a data acquisition and analysis system. The performance of the system has been tested under standard experimental conditions for CO oxidation over well-characterized Ce1-x-y(La/Y)(y)O2-delta catalysts. Testing of 3-way catalysis with CO, NO and C2H2 to convert to CO2, N-2 and H2O is done with this catalyst which shows complete removal of pollutants below 325 degrees C. Fixed oxide-ion defects in Pt substituted Ce1-y(La/Y)(y)O2-y/2 show higher catalytic activity than Pt ion-substituted CeO2