72 resultados para Hydrocarbons, Halogenated.
Resumo:
p-Benzoquinone and its halogen substituted derivatives are known to have differing reactivities in the triplet excited state. While bromanil catalyzes the reduction of octaethylporphyrin most efficiently among the halogenated p-benzoquinones, the reaction does not take place in presence of the unsubstituted p-benzoquinone (T. Nakano and Y. Mori, Bull. Chem. Soc. Jpn., 67, 2627 (1994)). Understanding of such differences requires a detailed knowledge of the triplet state structures, normal mode compositions and excited state dynamics. In this paper, we apply a recently presented scheme (M. Puranik, S. Umapathy, J. G. Snijders, and J. Chandrasekhar, J. Chem, Phys., 115, 6106 (2001)) that combines parameters from experiment and computation in a wave packet dynamics simulation to the triplet states of p-benzoquinone and bromanil. The absorption and resonance Raman spectra of both the molecules have been simulated. The normal mode compositions and mode specific excited state displacements have been presented and compared. Time-dependent evolution of the absorption and Raman overlaps for all the observed modes has been discussed in detail. In p-benzoquinone, the initial dynamics is along the C=C stretching and C-H bending modes whereas in bromanil nearly equal displacements are observed along all the stretching coordinates.
Resumo:
We propose a new method for evaluating the adsorbed phase volume during physisorption of several gases on activated carbon specimens. We treat the adsorbed phase as another equilibrium phase which satisfies the Gibbs equation and hence assume that the law of rectilinear diameters is applicable. Since invariably the bulk gas phase densities are known along measured isotherms, the constants of the adsorbed phase volume can be regressed from the experimental data. We take the Dubinin-Astakhov isotherm as the model for verifying our hypothesis since it is one of the few equations that accounts for adsorbed phase volume changes. In addition, the pseudo-saturation pressure in the supercritical region is calculated by letting the index of the temperature term in Dubinin's equation to be temperature dependent. Based on over 50 combinations of activated carbons and adsorbates (nitrogen, oxygen, argon, carbon dioxide, hydrocarbons and halocarbon refrigerants) it is observed that the proposed changes fit experimental data quite well.
Resumo:
A heterotroph Paenibacillus polymyxa bacteria is adapted to pyrite, chalcopyrite, galena and sphalerite minerals by repeated subculturing the bacteria in the presence of the mineral until their growth characteristics became similar to the growth in the absence of mineral. The unadapted and adapted bacterial surface have been chemically characterised by zeta-potential, contact angle, adherence to hydrocarbons and FT-IR spectroscopic studies. The surface free energies of bacteria have been calculated by following the equation of state and surface tension component approaches. The aim of the present paper is to understand the changes in surface chemical properties of bacteria during adaptation to sulfide minerals and the projected consequences in bioflotation and bioflocculation processes. The mineral-adapted cells became more hydrophilic as compared to unadapted cells. There are no significant changes in the surface charge of bacteria before and after adaptation, and all the bacteria exhibit an iso-electric point below pH 2.5. The contact angles are observed to be more reliable for hydrophobicity assessment than the adherence to hydrocarbons. The Lifschitz–van der Waals/acid–base approach to calculate surface free energy is found to be relevant for mineral–bacteria interactions. The diffuse reflectance FT-IR absorbance bands for all the bacteria are the same illustrating similar surface chemical composition. However, the intensity of the bands for unadapted and adapted cells is significantly varied and this is due to different amounts of bacterial secretions underlying different growth conditions.
Resumo:
A cascaded system of electrical discharges (non-thermal plasma) and adsorption process was investigated for the removal of oxides of Nitrogen (NOx) and total hydrocarbons (THC) from an actual diesel engine exhaust. The non-thermal plasma and adsorption processes were separately studied first and then the cascaded process was studied. In this study, different types of adsorbents were used. The NOx removal efficiency was higher with plasma-associated adsorption (cascaded) process compared to the individual processes and the removal efficiency was found almost invariant in time. When associated by plasma, among the adsorbents studied, activated charcoal and MS-13X were more effective for NOx and THC removal respectively. The experiments were conducted at no load and at 50% load conditions. The plasma reactor was kept at room temperature throughout the experiment, while the temperature of the adsorbent reactor was varied. A relative comparison of adsorbents was discussed at the end.
Resumo:
Experimental investigations into the effect of temperature on conversion of NO in the presence of hydrocarbons (ethylene, acetylene and n-hexane) are presented. An AC energized dielectric barrier discharge reactor was used as the plasma reactor. The experiments were carried out at different temperatures up to 200 degreesC. The discharge powers were measured at all the temperatures. The discharge power was found to increase with temperature. NO conversion in the presence of ethylene and n-hexane was better than that of acetylene at all temperatures. The addition of acetylene at room temperature showed no better conversion of NO compared to no additive case. While at higher temperatures, it could enhance the conversion of NO. A slight enhancement in NO and NOx removal was observed in the presence of water vapor. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A new class of fluorinated gelators derived from bile acids is reported. Perfluoroalkyl chains were attached to the bile acids through two different ester linkages and were synthesized following simple transformations. The gelation property of these derivatives is a function of the bile acid moiety, the spacer and the fluoroalkyl chain length. By varying these parameters, gels were obtained in aromatic hydrocarbons, DMSO and DMSO/DMF-H(2)O mixtures of different proportions. Several derivatives of deoxycholic and lithocholic acids were found to be efficient organogelators, while the reported bile-acid based organogelators are mostly derived from the cholic acid moiety. The efficient gelators among these compounds formed gels well below 1.0% (w/v) and hence they can be termed as supergelators. The mechanical properties of these gels could be modulated by changing either the bile acid moiety or by varying the length of the fluoroalkyl segment. The presence of CO(2)-philic perfluoroalkyl groups is also expected to enhance their solubility in supercritical CO(2) and hence these compounds are promising candidates for making aerogels.
Resumo:
A new class of fluorinated gelators derived from bile acids is reported. Perfluoroalkyl chains were attached to the bile acids through two different ester linkages and were synthesized following simple transformations. The gelation property of these derivatives is a function of the bile acid moiety, the spacer and the fluoroalkyl chain length. By varying these parameters, gels were obtained in aromatic hydrocarbons, DMSO and DMSO/DMF-H(2)O mixtures of different proportions. Several derivatives of deoxycholic and lithocholic acids were found to be efficient organogelators, while the reported bile-acid based organogelators are mostly derived from the cholic acid moiety. The efficient gelators among these compounds formed gels well below 1.0% (w/v) and hence they can be termed as supergelators. The mechanical properties of these gels could be modulated by changing either the bile acid moiety or by varying the length of the fluoroalkyl segment. The presence of CO(2)-philic perfluoroalkyl groups is also expected to enhance their solubility in supercritical CO(2) and hence these compounds are promising candidates for making aerogels.
Resumo:
The work reported here is concerned with a detailed thermochemical evaluation of the flaming mode behaviour of a gasifier based stove. Determination of the gas composition over the fuel bed, surface and gas temperatures in the gasification process constitute principal experimental features. A simple atomic balance for the gasification reaction combined with the gas composition from the experiments is used to determine the CH(4) equivalent of higher hydrocarbons and the gasification efficiency (eta g). The components of utilization efficiency, namely, gasification-combustion and heat transfer are explored. Reactive flow computational studies using the measured gas composition over the fuel bed are used to simulate the thermochemical flow field and heat transfer to the vessel; hither-to-ignored vessel size effects in the extraction of heat from the stove are established clearly. The overall flaming mode efficiency of the stove is 50-54%; the convective and radiative components of heat transfer are established to be 45-47 and 5-7% respectively. The efficiency estimates from reacting computational fluid dynamics (RCFD) compare well with experiments. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The determination of the crystal and molecular structures of a large number of compounds containing the C(sp(2))-F bond has been investigated in detail in halogenated benzanilides and also in liquids, namely the fluorinated amines. It has been observed that when the fluorine atom is present in the ortho or meta position with respect to the amide functionality in benzanilides or the amino group in fluorinated amines which are liquids at room temperature, the fluorine atom exhibits positional disorder. This is associated with changes in patterns of intermolecular interactions which affect crystal packing. Furthermore, the presence of a fluorine atom on the benzanilide framework, in the presence of a heavier halogen (chloro, bromo and iodo), meta or ortho to the amide group does not eliminate the disorder associated with these molecules. In this article, we highlight the salient features present in halogenated compounds exhibiting disorder in the position of organic fluorine with concomitant changes in crystal packing. This feature is also compared with related compounds exhibiting similarity in electronic features, namely positional disorder.
Resumo:
Direct methanol synthesis from CH4 and O2 has been experimentally studied using pulsed discharge plasma in concentric-cylinder-type reactors. The methanol production becomes efficient with an increase in the average electric field strength of the reactor. A combination of the pulsed discharge and catalysts was tested and was proved to be effective in increasing both the production and selectivity of methanol. In the present stage, about 2% of CH4 can be converted into other hydrocarbons, and a methanol yield of around 0.5% and selectivity of 38% can be obtained when a catalyst of V2O5+SiO2 is combined with the pulsed discharge plasma
Resumo:
Queens of many social insect species are known to maintain reproductive monopoly by pheromonal signalling of fecundity. Queens of the primitively eusocial wasp Ropalidia marginata appear to do so using secretions from their Dufour's glands, whose hydrocarbon composition is correlated with fertility. Solitary nest foundresses of R. marginata are without nestmates; hence expressing a queen signal can be redundant, since there is no one to receive the signal. But if queen pheromone is an honest signal inextricably linked with fertility, it should correlate with fertility and be expressed irrespective of the presence or absence of receivers of the signal, by virtue of being a byproduct of the state of fertility. Hence we compared the Dufour's gland hydrocarbons and ovaries of solitary foundresses with queens and workers of post-emergence nests. Our results suggest that queen pheromone composition in R. marginata is a byproduct of fertility and hence can honestly signal fertility. This provides important new evidence for the honest signalling hypothesis.
Resumo:
The anatase phase of titania (TiO2) nano-photocatalysts was prepared using a modified sol gel process and thereafter embedded on carbon-covered alumina supports. The carbon-covered alumina (CCA) supports were prepared via the adsorption of toluene 2,4-diisocyanate (TDI) on the surface of the alumina. TDI was used as the carbon source for the first time for the carbon-covered alumina support system. The adsorption of TDI on alumina is irreversible; hence, the resulting organic moiety can undergo pyrolysis at high temperatures resulting in the formation of a carbon coating on the surface of the alumina. The TiO2 catalysts were impregnated on the CCA supports. X-ray diffraction analysis indicated that the carbon deposited on the alumina was not crystalline and also showed the successful impregnation of TiO2 on the CCA supports. In the Raman spectra, it could be deduced that the carbon was rather a conjugated olefinic or polycyclic hydrocarbons which can be considered as molecular units of a graphitic plane. The Raman analysis of the catalysed CCAs showed the presence of both the anatase titania and D and G band associated with the carbon of the CCAs. The scanning electron microscope micrographs indicated that the alumina was coated by a carbon layer and the energy dispersive X-ray spectra showed the presence of Al, O and C in the CCA samples, with the addition of Ti for the catalyst impregnated supports. The Brunauer Emmet and Teller surface area analysis showed that the incorporating of carbon on the alumina surface resulted in an increase in surface area, while the impregnation with TiO2 resulted in a further increase in surface area. However, a decrease in the pore volume and diameter was observed. The photocatalytic activity of the nanocatalysts was studied for the degradation of Rhodamine B dye. The CCA-TiO2 nanocatalysts were found to be more photocatalytically active under both visible and UV light irradiation compared to the free TIO2 nanocatalysts.
Resumo:
Ropalidia marginata, a primitively eusocial wasp, is different from typical primitively eusocial species in having docile queens who cannot be using dominance to maintain reproductive monopoly and instead appear to use a pheromone from the Dufour's gland to do so. When a docile queen is removed from her colony, one of the workers (potential queen, PQ) becomes highly aggressive, and if the queen is not returned, gradually loses her aggression and becomes the new docile queen within a few days. We hypothesized that the decrease in aggression of the PQ with time since queen removal should be correlated with her change in ovaries and pheromone profile. Because the Dufour's gland hydrocarbon composition in R.marginata can be correlated with fertility, this also gave us an opportunity to test whether PQ is different from workers in her Dufour's gland hydrocarbons. In this study, we therefore trace the road to royalty in R.marginata, that is, the transition of the PQ during queen establishment, in terms of her ovaries, aggression, and Dufour's gland hydrocarbons. Our study focuses on queen establishment, which is important for understanding how reproductive conflict can be manifested and resolved.
Resumo:
Ropalidia marginata is a primitively eusocial paper wasp found in peninsular India, where recent work suggests the role of the Dufour's gland hydrocarbons in queen signaling. It appears that the queen signals her presence to workers by rubbing the tip of her abdomen on the nest surface, thereby presumably applying her Dufour's gland secretion to the nest. Since the queen alone produces pheromone from the Dufour's gland and also applies it on the nest surface, the activity level of queen gland should be higher than that of worker gland, as the gland contents would have to get replenished periodically for queens but not for workers. The difference in activity level can be manifested in difference in Dufour's gland morphology, larger glands implying higher activity levels and smaller glands implying lower activity levels, as positive correlation between gland size and gland activity has been reported in exocrine glands of various taxa (including Hymenopteran insects). Hence we investigated whether there is any size difference between Dufour's glands of queens and workers in R. marginata. We found that there was no difference between queens and workers in their Dufour's gland size, implying that Dufour's gland activity and Dufour's gland size are likely to be uncorrelated in this species.
Resumo:
In this article we present dual-component charge-transfer interaction (CT) induced organogel formation with bile acid anthracene conjugates as donors and 2,4,7-trinitrofluorenone (TNF) as the acceptor. The use of TNF (1) as a versatile electron acceptor in the formation of gels is demonstrated through the formation of gels with different steroidal groups on the anthracene moiety in a variety of solvents ranging from aromatic hydrocarbons to long chain alcohols. Thermal stability and variable temperature fluorescence experiments were performed on these CT gels. Dynamic rheological experiments conducted on these gels suggest that these are viscoelastic soft materials and with the gel strength can be modulated by varying the donor/acceptor ratios.