71 resultados para House Path-Goal
Resumo:
A new composition path, Xi-Xj=constant, is suggested for the semi-empirical calculation of the thermodynamic properties of ternary ‘substitutional’ solutions from binary data, when the binary systems show deviations from the regular solution model. A comparison is made between the results obtained for integral and partial properties using this composition path and those calculated employing other composition paths suggested in literature. It appears that the best estimate of the ternary properties is obtained when binary data at compositions closest to the ternary composition are used.
Resumo:
A method for calculating the bends in the glide slope due to uneven terrain is presented. A computer program written for the purpose enables the calculation of the difference in depth of modulation (DDM) at any point, taking into account the effect of uneven terrain. Results are presented for a hypothetical case of a hill in front of the runway. The program enables us to predict the glide slope bends due to irregular terrain, so that proper selection of glide slope antenna location can be made.
Resumo:
Levy flights can be described using a Fokker-Planck equation, which involves a fractional derivative operator in the position coordinate. Such an operator has its natural expression in the Fourier domain. Starting with this, we show that the solution of the equation can be written as a Hamiltonian path integral. Though this has been realized in the literature, the method has not found applications as the path integral appears difficult to evaluate. We show that a method in which one integrates over the position coordinates first, after which integration is performed over the momentum coordinates, can be used to evaluate several path integrals that are of interest. Using this, we evaluate the propagators for (a) free particle, (b) particle subjected to a linear potential, and (c) harmonic potential. In all the three cases, we have obtained results for both overdamped and underdamped cases. DOI: 10.1103/PhysRevE.86.061105
Resumo:
The evolution of microstructure and texture in commercially pure titanium has been studied as a function of strain path during rolling using experimental techniques and viscoplastic self-consistent simulations. Four different strain paths, namely unidirectional rolling, two-step cross rolling, multistep cross rolling, and reverse rolling, have been employed to decipher the effect of strain path change on the evolution of deformation texture and microstructure. The cross-rolled samples show higher hardness with lower microstrain and intragranular misorientation compared to the unidirectional rolled sample as determined from X-ray diffraction and electron backscatter diffraction, respectively. The higher hardness of the cross-rolled samples is attributed to orientation hardening due to the near basal texture. Viscoplastic self-consistent simulations are able to successfully predict the texture evolution of the differently rolled samples. Simulation results indicate the higher contribution of basal slip in the formation of near basal texture and as well as lower intragranular misorientation in the cross-rolled samples.
Resumo:
In this paper, we study the diversity-multiplexing-gain tradeoff (DMT) of wireless relay networks under the half-duplex constraint. It is often unclear what penalty if any, is imposed by the half-duplex constraint on the DMT of such networks. We study two classes of networks; the first class, called KPP(I) networks, is the class of networks with the relays organized in K parallel paths between the source and the destination. While we assume that there is no direct source-destination path, the K relaying paths can interfere with each other. The second class, termed as layered networks, is comprised of relays organized in layers, where links exist only between adjacent layers. We present a communication scheme based on static schedules and amplify-and-forward relaying for these networks. We also show that for KPP(I) networks with K >= 3, the proposed schemes can achieve full-duplex DMT performance, thus demonstrating that there is no performance hit on the DMT due to the half-duplex constraint. We also show that, for layered networks, a linear DMT of d(max)(1 - r)(+) between the maximum diversity d(max) and the maximum MG, r(max) = 1 is achievable. We adapt existing DMT optimal coding schemes to these networks, thus specifying the end-to-end communication strategy explicitly.
Resumo:
This paper deals with an optimization based method for synthesis of adjustable planar four-bar, crank-rocker mechanisms. For multiple different and desired paths to be traced by a point on the coupler, a two stage method first determines the parameters of the possible driving dyads. Then the remaining mechanism parameters are determined in the second stage where a least-squares based circle-fitting procedure is used. Compared to existing formulations, the optimization method uses less number of design variables. Two numerical examples demonstrate the effectiveness of the proposed synthesis method. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Gene expression in living systems is inherently stochastic, and tends to produce varying numbers of proteins over repeated cycles of transcription and translation. In this paper, an expression is derived for the steady-state protein number distribution starting from a two-stage kinetic model of the gene expression process involving p proteins and r mRNAs. The derivation is based on an exact path integral evaluation of the joint distribution, P(p, r, t), of p and r at time t, which can be expressed in terms of the coupled Langevin equations for p and r that represent the two-stage model in continuum form. The steady-state distribution of p alone, P(p), is obtained from P(p, r, t) (a bivariate Gaussian) by integrating out the r degrees of freedom and taking the limit t -> infinity. P(p) is found to be proportional to the product of a Gaussian and a complementary error function. It provides a generally satisfactory fit to simulation data on the same two-stage process when the translational efficiency (a measure of intrinsic noise levels in the system) is relatively low; it is less successful as a model of the data when the translational efficiency (and noise levels) are high.
Resumo:
In this paper we propose a framework for optimum steering input determination of all-wheel steer vehicles (AWSV) on rough terrains. The framework computes the steering input which minimizes the tracking error for a given trajectory. Unlike previous methodologies of computing steering inputs of car-like vehicles, the proposed methodology depends explicitly on the vehicle dynamics and can be extended to vehicle having arbitrary number of steering inputs. A fully generic framework has been used to derive the vehicle dynamics and a non-linear programming based constrained optimization approach has been used to compute the steering input considering the instantaneous vehicle dynamics, no-slip and contact constraints of the vehicle. All Wheel steer Vehicles have a special parallel steering ability where the instantaneous centre of rotation (ICR) is at infinity. The proposed framework automatically enables the vehicle to choose between parallel steer and normal operation depending on the error with respect to the desired trajectory. The efficacy of the proposed framework is proved by extensive uneven terrain simulations, for trajectories with continuous or discontinuous velocity profile.
Resumo:
This article addresses the problem of determining the shortest path that connects a given initial configuration (position, heading angle, and flight path angle) to a given rectilinear or a circular path in three-dimensional space for a constant speed and turn-rate constrained aerial vehicle. The final path is assumed to be located relatively far from the starting point. Due to its simplicity and low computational requirements the algorithm can be implemented on a fixed-wing type unmanned air vehicle in real time in missions where the final path may change dynamically. As wind has a very significant effect on the flight of small aerial vehicles, the method of optimal path planning is extended to meet the same objective in the presence of wind comparable to the speed of the aerial vehicles. But, if the path to be followed is closer to the initial point, an off-line method based on multiple shooting, in combination with a direct transcription technique, is used to obtain the optimal solution. Optimal paths are generated for a variety of cases to show the efficiency of the algorithm. Simulations are presented to demonstrate tracking results using a 6-degrees-of-freedom model of an unmanned air vehicle.
Resumo:
In this paper, a fractional order proportional-integral controller is developed for a miniature air vehicle for rectilinear path following and trajectory tracking. The controller is implemented by constructing a vector field surrounding the path to be followed, which is then used to generate course commands for the miniature air vehicle. The fractional order proportional-integral controller is simulated using the fundamentals of fractional calculus, and the results for this controller are compared with those obtained for a proportional controller and a proportional integral controller. In order to analyze the performance of the controllers, four performance metrics, namely (maximum) overshoot, control effort, settling time and integral of the timed absolute error cost, have been selected. A comparison of the nominal as well as the robust performances of these controllers indicates that the fractional order proportional-integral controller exhibits the best performance in terms of ITAE while showing comparable performances in all other aspects.
Resumo:
This paper considers the problem of determining the time-optimal path of a fixed-wing Miniature Air Vehicle (MAV), in the presence of wind. The MAV, which is subject to a bounded turn rate, is required to eventually converge to a straight line starting from a known initial position and orientation. Earlier work in the literature uses Pontryagin's Minimum Principle (PMP) to solve this problem only for the no-wind case. In contrast, the present work uses a geometric approach to solve the problem completely in the presence of wind. In addition, it also shows how PMP can be used to partially solve the problem. Using a 6-DOF model of a MAV the generated optimal path is tracked by an autopilot consisting of proportional-integral-derivative (PID) controllers. The simulation results show the path generation and tracking for cases with steady and time-varying wind. Some issues on real-time path planning are also addressed.
Resumo:
This paper presents a strategy to determine the shortest path of a fixed-wing Miniature Air Vehicle (MAV), constrained by a bounded turning rate, to eventually fly along a given straight line, starting from an arbitrary but known initial position and orientation. Unlike the work available in the literature that solves the problem using the Pontryagin's Minimum Principle (PMP) the trajectory generation algorithm presented here considers a geometrical approach which is intuitive and easy to understand. This also computes the explicit solution for the length of the optimal path as a function of the initial configuration. Further, using a 6-DOF model of a MAV the generated optimal path is tracked by an autopilot consisting of proportional-integral-derivative (PID) controllers. The simulation results show the path generation and tracking for different cases.
Resumo:
Our work is motivated by impromptu (or ``as-you-go'') deployment of wireless relay nodes along a path, a need that arises in many situations. In this paper, the path is modeled as starting at the origin (where there is the data sink, e.g., the control center), and evolving randomly over a lattice in the positive quadrant. A person walks along the path deploying relay nodes as he goes. At each step, the path can, randomly, either continue in the same direction or take a turn, or come to an end, at which point a data source (e.g., a sensor) has to be placed, that will send packets to the data sink. A decision has to be made at each step whether or not to place a wireless relay node. Assuming that the packet generation rate by the source is very low, and simple link-by-link scheduling, we consider the problem of sequential relay placement so as to minimize the expectation of an end-to-end cost metric (a linear combination of the sum of convex hop costs and the number of relays placed). This impromptu relay placement problem is formulated as a total cost Markov decision process. First, we derive the optimal policy in terms of an optimal placement set and show that this set is characterized by a boundary (with respect to the position of the last placed relay) beyond which it is optimal to place the next relay. Next, based on a simpler one-step-look-ahead characterization of the optimal policy, we propose an algorithm which is proved to converge to the optimal placement set in a finite number of steps and which is faster than value iteration. We show by simulations that the distance threshold based heuristic, usually assumed in the literature, is close to the optimal, provided that the threshold distance is carefully chosen. (C) 2014 Elsevier B.V. All rights reserved.