63 resultados para High heat-producing granites (HHPGs)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of matrix microstructure on the fracture of Al-alloy composites with 60 vol% alumina particulates was studied. The matrix composition and microstructure were systematically varied by changing the infiltration temperature and heat treatment. Characterization was carried out by a combination of metallography, hardness measurements, and fracture studies conducted on compact tension specimens to study the fracture toughness and crack growth in the composites. The composites showed a rise in crack resistance with crack extension (R curves) due to bridges of intact matrix ligaments formed in the crack wake. The steady-state or plateau toughness reached upon stable crack growth was observed to be more sensitive to the process temperature rather than to the heat treatment. Fracture in the composites was predominantly by particle fracture, extensive deformation, and void nucleation in the matrix. Void nucleation occurred in the matrix in the as-solutionized and peak-aged conditions and preferentially near the interface in the underaged and overaged conditions. Micromechanical models based on crack bridging by intact ductile ligaments were modified by a plastic constraint factor from estimates of the plastic zone formed under indentations, and are shown to be adequate in predicting the steady-state toughness of the composite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Fighter pilots are frequently exposed to high temperatures during high-speed low-level flight. Heat strain can result in temporary impairment of cognitive functions and when severe, loss of consciousness and consequent loss of life and equipment. Induction of stress proteins is a highly conserved stress response mechanism from bacteria to humans. induced stress protein levels are known to be cytoprotective and have been correlated with stress tolerance. Although many studies on the heat shock response mechanisms have been performed in cell culture and animal model systems, there is very limited information on stress protein induction in human subjects. Hypothesis: Heat shock proteins (Hsp), especially Hsp70, may be induced in human subjects exposed to high temperatures in a hot cockpit designed to simulate heat stress experienced in low flying sorties. Methods: Six healthy volunteers were subjected to heat stress at 55degreesC in a high temperature cockpit simulator for a period of 1 h at 30% humidity. Physiological parameters such as oral and skin temperatures, heart rate, and sweat rate were monitored regularly during this time. The level of Hsp70 in leukocytes was examined before and after the heat exposure in each subject. Conclusions: Hsp70 was found to be significantly induced in all the six subjects exposed to heat stress. The level of induced Hsp70 appears to correlate with other strain indicators such as accumulative circulatory strain and Craig's modified index. The usefulness of Hsp70 as a molecular marker of heat stress in humans is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The composition, structural, electrical, and optical properties of as-grown and heat treated tin-mono-sulfide (SnS) ultra-thin films have been studied. The ultra-thin SnS films were prepared on glass substrates by thermal resistive evaporation technique. All the SnS films contained nanocrystallites and exhibited p-type conductivity with a low Hall-mobility, <50 cm(2)/Vs. All these films are highly tin rich in nature and exhibited orthorhombic crystal structure. As compared to other films, the SnS films annealed at 300 degrees C showed a low electrical resistivity of similar to 36 Omega cm with an optical band gap of similar to 1.98 eV. The observed electrical and optical properties of all the films are discussed based on their composition and structural parameters. These nanocrystalline ultra-thin SnS films could be expected as a buffer layer for the development of tandem solar cell devices due to their low-resistivity and high absorbability with an optimum band gap. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The change in thermodynamic quantities (e. g., entropy, specific heat etc.) by the application of magnetic field in the case of the high-T-c superconductor YBCO system is examined phenomenological by the Ginzburg-Landau theory of anisotropic type-II superconductors. An expression for the change in the entropy (Delta S) and change in specific heat (Delta C) in a magnetic field for any general orientation of an applied magnetic field B-a with respect to the crystallographic c-axis is obtained. The observed large reduction of specific heat anomaly just below the superconducting transition and the observed variation of entropy with magnetic field are explained quantitatively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reliable bench mark experimental database in the separated hypersonic flow regime is necessary to validate high resolution CFD codes. In this paper we report the surface pressure and heat transfer measurements carried out on double cones (first cone semi-apex angle = 15, 25 deg.; second cone semi-apex angle= 35, 68 deg.) at hypersonic speeds that will be useful for CFD code validation studies. The surface pressure measurements are carried out at nominal Mach number of 8.35 in the IISc hypersonic wind tunnel. On the other hand the surface heat transfer measurements are carried out at a nominal Mach number of 5.75 in the IISc hypersonic shock tunnel. The flow separation point on the first cone, flow reattachment on the second cone and the wild fluctuation of the transmitted shock on the second cone surface (25/68 deg. double cone) in the presence of severe adverse pressure gradient are some of the flow features captured in the measurements. The results from the CFD studies indicate good agreement with experiments in the attached flow regime while considerable differences are noticeable in the separated flow regime.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Designing a heat sink based on a phase change material (PCM) under cyclic loading is a critical issue. For cyclic operation, it is required that the fraction of the PCM melting during the heating cycle should completely resolidify during the cooling period, so that that thermal storage unit can be operated for an unlimited number of cycles. Accordingly, studies are carried out to find the parameters influencing the behavior of a PCM under cyclic loading. A number of parameters are identified in the process, the most important ones being the duty cycle and heat transfer coefficient (h) for cooling. The required h or the required cooling period for complete resolidification for infinite cyclic operation of a conventional PCM-based heat sink is found to be very high and unrealistic with air cooling from the surface. To overcome this problem, the conventional design is modified where h and the area exposed to heat transfer can be independently controlled. With this arrangement, the enhanced area provided for cooling keeps h within realistic limits. Analytical investigation is carried out to evaluate the thermal performance of this modified PCM-based heat sink in comparison to those with conventional designs. Experiments are also performed on both the conventional and the modified PCM-based heat sinks to validate the new findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High temperature superconductivity in the cuprates remains one of the most widely investigated, constantly surprising and poorly understood phenomena in physics. Here, we describe briefly a new phenomenological theory inspired by the celebrated description of superconductivity due to Ginzburg and Landau and believed to describe its essence. This posits a free energy functional for the superconductor in terms of a complex order parameter characterizing it. We propose that there is, for superconducting cuprates, a similar functional of the complex, in plane, nearest neighbor spin singlet bond (or Cooper) pair amplitude psi(ij). Further, we suggest that a crucial part of it is a (short range) positive interaction between nearest neighbor bond pairs, of strength J'. Such an interaction leads to nonzero long wavelength phase stiffness or superconductive long range order, with the observed d-wave symmetry, below a temperature T-c similar to zJ' where z is the number of nearest neighbors; d-wave superconductivity is thus an emergent, collective consequence. Using the functional, we calculate a large range of properties, e. g., the pseudogap transition temperature T* as a function of hole doping x, the transition curve T-c(x), the superfluid stiffness rho(s)(x, T), the specific heat (without and with a magnetic field) due to the fluctuating pair degrees of freedom and the zero temperature vortex structure. We find remarkable agreement with experiment. We also calculate the self-energy of electrons hopping on the square cuprate lattice and coupled to electrons of nearly opposite momenta via inevitable long wavelength Cooper pair fluctuations formed of these electrons. The ensuing results for electron spectral density are successfully compared with recent experimental results for angle resolved photo emission spectroscopy (ARPES), and comprehensively explain strange features such as temperature dependent Fermi arcs above T-c and the ``bending'' of the superconducting gap below T-c.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental study for transient temperature response of low aspect ratio packed beds at high Reynolds numbers for a free stream with varying inlet temperature is presented. The packed bed is used as a compact heat exchanger along with a solid propellant gas-generator, to generate room temperature gases for use in applications such as control actuation and air bottle pressurization. Packed beds of lengths similar to 200 mm and 300 mm were characterized for packing diameter based Reynolds numbers, Re-d ranging from 0.6 x 10(4) to 8.5 x 10(4). The solid packing used in the bed consisted of circle divide 9.5 mm and circle divide 5 mm steel spheres with suitable arrangements to eliminate flow entrance and exit effects. The ratios of packed bed diameter to packing diameter for 9.5 mm and 5 mm sphere packing were similar to 9.5 and 18 respectively, with the average packed bed porosities around 0.4. Gas temperatures were measured at the entry, exit and at three axial locations along centre-line in the packed beds. The solid packing temperature was measured at three axial locations in the packed bed. An average Nusselt number correlation of the form Nu(d) = 3.91Re(d)(05) for Re-d range of 10(4) is proposed. For engineering applications of packed beds such as pebble bed heaters, thermal storage systems, and compact heat exchangers a simple procedure is suggested for calculating unsteady gas temperature at packed bed exit for packing Biot number Bi-d < 0.1. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports an experimental investigation of oscillating temperature field beneath a single isolated nucleation site using a non-invasive TLC (thermochromic liquid crystal) based thermography technique. Empirical correlations are presented to demonstrate the influence of system pressure and wall heat flux on different ebullition characteristics in the nucleate pool boiling regime of refrigerant R-134a. TLC transient response and two-phase flow structure are captured using synchronized, high resolution imaging. It is observed that the area of influence of nucleation site exhibits a two-part distinct transient behavior during the bubble growth period and broadens to a maximum of 1.57 times the bubble diameter at the instant of bubble departure. This is accompanied by a sharp fall of 2.5 degrees C in the local excess temperature at the nucleation site, which results in momentary augmentation (similar to 40%) in the local heat transfer coefficient at the nucleation origin. The enhanced heat transfer rate observed during the bubble peel-off event is primarily due to transient micro-convection in the wake of the retreating bubble. Further, the results indicate that a slight increase in system pressure from 813.6 to 882.5 kPa has no considerable effect on either the wall superheat or the overall heat transfer coefficient and ebullition frequency. In addition, correlations have been obtained for bubble Reynolds number, Jackob number and the dimensionless bubble generation frequency in terms of modified boiling number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ni49.4Ti38.6Hf12 shape memory alloy has been characterized for structure, microstructure and transformation temperatures. The microstructure of the as-cast sample consists of B19' and R-phases, and (Ti,Hf)(2)Ni precipitate phase along the grain boundaries in the form of dendrites. The microstructure of the solution treated sample contains only B19' martensite phase, whereas a second heat treatment after solutionizing results in reappearance of the R-phase and the (Ti,Hf)(2)Ni grain boundary precipitate phase in the microstructure. A detailed microstructural examination shows the presence of precipitates having both coherent and incoherent interface with the matrix, the type of interface being dictated by the crystallographic orientation of the matrix phase. The present study shows that the (Ti,Hf)(2)Ni precipitates having coherent interface with the matrix, drive the formation of the R-phase in the microstructure. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heat transfer rates measured in front and to the side of a protrusion on an aluminum flat plate subjected to hypersonic flow at zero angle of attack are presented for two flow enthalpies of approximately 2 MJ/kg and 4.5 MJ/kg. Experiments were conducted in the hypersonic shock tunnel (HST2) and free piston driven HST3 at a freestream Mach number of 8. Heat transfer data was obtained for different geometries of the protrusion of a height of 4 mm, which is approximately the local boundary layer thickness. Comparatively high rates of heat transfer were obtained at regions of flow circulation in the separated region, with the hottest spot generally appearing in front of the protuberance. Experimental values showed moderate agreement with existing empirical correlations at higher enthalpy but not at all for the lower enthalpy condition, although the correlations were coined at enthalpy values nearer to the lower value. Schlieren visualization was also done to investigate the flow structures qualitatively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Heat shock factor binding protein (HSBP) was originally discovered in a yeast two-hybrid screen as an interacting partner of heat shock factor (HSF). It appears to be conserved in all eukaryotes studied so far, with yeast being the only exception. Cell biological analysis of HSBP in mammals suggests its role as a negative regulator of heat shock response as it appears to interact with HSF only during the recovery phase following exposure to heat stress. While the identification of HSF in the malaria parasite is still eluding biologists, this study for the first time, reports the presence of a homologue of HSBP in Plasmodium falciparum. Methods: PfHSBP was cloned and purified as his-tag fusion protein. CD (Circular dichroism) spectroscopy was performed to predict the secondary structure. Immunoblots and immunofluorescence approaches were used to study expression and localization of HSBP in P. falciparum. Cellular fractionation was performed to examine subcellular distribution of PfHSBP. Immunoprecipitation was carried out to identify HSBP interacting partner in P. falciparum. Results: PfHSBP is a conserved protein with a high helical content and has a propensity to form homo-oligomers. PfHSBP was cloned, expressed and purified. The in vivo protein expression profile shows maximal expression in trophozoites. The protein was found to exist in oligomeric form as trimer and hexamer. PfHSBP is predominantly localized in the parasite cytosol, however, upon heat shock, it translocates to the nucleus. This study also reports the interaction of PfHSBP with PfHSP70-1 in the cytoplasm of the parasite. Conclusions: This study emphasizes the structural and biochemical conservation of PfHSBP with its mammalian counterpart and highlights its potential role in regulation of heat shock response in the malaria parasite. Analysis of HSBP may be an important step towards identification of the transcription factor regulating the heat shock response in P. falciparum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The addition of 3 wt% Cu to heat-resistant SUS 304H austenitic steel enhances its high temperature mechanical properties. To further improve the properties, particularly the creep resistance and ductility at high temperatures, a post-solutionizing heat-treatment method that involves an intermediated annealing either at 700 or 800 degrees C after solutionizing for durations up to 180 min was employed. The purpose this heat-treatment is to precipitate planar Cr23C6 at the grain boundaries, which results in the boundaries getting serrated. Detailed microstructural analyses of these `grain boundary engineered' alloys was conducted and their mechanical performance, both at room temperature and at 750 degrees C, was evaluated. While the grain size and texture are unaffected due to the high temperature hold, the volume fraction of Sigma 3 twin boundaries was found to increase significantly. While the strength enhancement was only marginal, the ductility was found to increase significantly, especially at high temperature. A marked increase in the creep resistance was also noted, which is attributed to the reduction of the grain boundary sliding by the grain boundary serrations and the suppression of grain boundary cavitation through the optimization of the volume fraction and spacing of the Cr23C6 precipitates. The special heat-treatment performed with holding time of 3 h at 700 degrees C resulted in the optimum combination of strength, ductility and creep resistance at high temperature. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop new techniques to efficiently evaluate heat kernel coefficients for the Laplacian in the short-time expansion on spheres and hyperboloids with conical singularities. We then apply these techniques to explicitly compute the logarithmic contribution to black hole entropy from an N = 4 vector multiplet about a Z(N) orbifold of the near-horizon geometry of quarter-BPS black holes in N = 4 supergravity. We find that this vanishes, matching perfectly with the prediction from the microstate counting. We also discuss possible generalisations of our heat kernel results to higher-spin fields over ZN orbifolds of higher-dimensional spheres and hyperboloids.