236 resultados para H-closed space
Resumo:
We derive a very general expression of the survival probability and the first passage time distribution for a particle executing Brownian motion in full phase space with an absorbing boundary condition at a point in the position space, which is valid irrespective of the statistical nature of the dynamics. The expression, together with the Jensen's inequality, naturally leads to a lower bound to the actual survival probability and an approximate first passage time distribution. These are expressed in terms of the position-position, velocity-velocity, and position-velocity variances. Knowledge of these variances enables one to compute a lower bound to the survival probability and consequently the first passage distribution function. As examples, we compute these for a Gaussian Markovian process and, in the case of non-Markovian process, with an exponentially decaying friction kernel and also with a power law friction kernel. Our analysis shows that the survival probability decays exponentially at the long time irrespective of the nature of the dynamics with an exponent equal to the transition state rate constant.
Resumo:
An axis-parallel k-dimensional box is a Cartesian product R-1 x R-2 x...x R-k where R-i (for 1 <= i <= k) is a closed interval of the form [a(i), b(i)] on the real line. For a graph G, its boxicity box(G) is the minimum dimension k, such that G is representable as the intersection graph of (axis-parallel) boxes in k-dimensional space. The concept of boxicity finds applications in various areas such as ecology, operations research etc. A number of NP-hard problems are either polynomial time solvable or have much better approximation ratio on low boxicity graphs. For example, the max-clique problem is polynomial time solvable on bounded boxicity graphs and the maximum independent set problem for boxicity d graphs, given a box representation, has a left perpendicular1 + 1/c log n right perpendicular(d-1) approximation ratio for any constant c >= 1 when d >= 2. In most cases, the first step usually is computing a low dimensional box representation of the given graph. Deciding whether the boxicity of a graph is at most 2 itself is NP-hard. We give an efficient randomized algorithm to construct a box representation of any graph G on n vertices in left perpendicular(Delta + 2) ln nright perpendicular dimensions, where Delta is the maximum degree of G. This algorithm implies that box(G) <= left perpendicular(Delta + 2) ln nright perpendicular for any graph G. Our bound is tight up to a factor of ln n. We also show that our randomized algorithm can be derandomized to get a polynomial time deterministic algorithm. Though our general upper bound is in terms of maximum degree Delta, we show that for almost all graphs on n vertices, their boxicity is O(d(av) ln n) where d(av) is the average degree.
Resumo:
In this paper, we present a low-complexity algorithm for detection in high-rate, non-orthogonal space-time block coded (STBC) large-multiple-input multiple-output (MIMO) systems that achieve high spectral efficiencies of the order of tens of bps/Hz. We also present a training-based iterative detection/channel estimation scheme for such large STBC MIMO systems. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed multistage likelihood ascent search (M-LAS) detector in conjunction with the proposed iterative detection/channel estimation scheme at low complexities. The fact that we could show such good results for large STBCs like 16 X 16 and 32 X 32 STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot based training for channel estimation and turbo coding) establishes the effectiveness of the proposed detector and channel estimator. We decode perfect codes of large dimensions using the proposed detector. With the feasibility of such a low-complexity detection/channel estimation scheme, large-MIMO systems with tens of antennas operating at several tens of bps/Hz spectral efficiencies can become practical, enabling interesting high data rate wireless applications.
Resumo:
One of two boundary conditions generally assumed in solutions of the dynamo equation is related to the disappearance of the azimuthal field at the boundary. Parker (1984) points out that for the realization of this condition the field must escape freely through the surface. Escape requires that the field be detached from the gas in which it is embedded. In the case of the sun, this can be accomplished only through reconnection in the tenuous gas above the visible surface. Parker concludes that the observed magnetic activity on the solar surface permits at most three percent of the emerging flux to escape. He arrives at the conclusion that, instead of B(phi) = 0, the partial derivative of B(phi) to r is equal to zero. The present investigation is concerned with the effect of changing the boundary condition according to Parker's conclusion. Implications for the solar convection zone are discussed.
Resumo:
"Extended Clifford algebras" are introduced as a means to obtain low ML decoding complexity space-time block codes. Using left regular matrix representations of two specific classes of extended Clifford algebras, two systematic algebraic constructions of full diversity Distributed Space-Time Codes (DSTCs) are provided for any power of two number of relays. The left regular matrix representation has been shown to naturally result in space-time codes meeting the additional constraints required for DSTCs. The DSTCs so constructed have the salient feature of reduced Maximum Likelihood (ML) decoding complexity. In particular, the ML decoding of these codes can be performed by applying the lattice decoder algorithm on a lattice of four times lesser dimension than what is required in general. Moreover these codes have a uniform distribution of power among the relays and in time, thus leading to a low Peak to Average Power Ratio at the relays.
Resumo:
We deal with a single conservation law with discontinuous convex-concave type fluxes which arise while considering sign changing flux coefficients. The main difficulty is that a weak solution may not exist as the Rankine-Hugoniot condition at the interface may not be satisfied for certain choice of the initial data. We develop the concept of generalized entropy solutions for such equations by replacing the Rankine-Hugoniot condition by a generalized Rankine-Hugoniot condition. The uniqueness of solutions is shown by proving that the generalized entropy solutions form a contractive semi-group in L-1. Existence follows by showing that a Godunov type finite difference scheme converges to the generalized entropy solution. The scheme is based on solutions of the associated Riemann problem and is neither consistent nor conservative. The analysis developed here enables to treat the cases of fluxes having at most one extrema in the domain of definition completely. Numerical results reporting the performance of the scheme are presented. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Design criteria and full-diversity Distributed Space Time Codes (DSTCs) for the two phase transmission based cooperative diversity protocol of Jing-Hassibi and the Generalized Nonorthogonal Amplify and Forward (GNAF) protocol are reported, when the relay nodes are assumed to have knowledge of the phase component of the source to relay channel gains. It is shown that this under this partial channel state information (CSI), several well known space time codes for the colocated MIMO (Multiple Input Multiple Output) channel become amenable for use as DSTCs. In particular, the well known complex orthogonal designs, generalized coordinate interleaved orthogonal designs (GCIODs) and unitary weight single symbol decodable (UW-SSD) codes are shown to satisfy the required design constraints for DSTCs. Exploiting the relaxed code design constraints, we propose DSTCs obtained from Clifford Algebras which have low ML decoding complexity.
Resumo:
In this paper, a relative velocity approach is used to analyze the capturability of a geometric guidance law. Point mass models are assumed for both the missile and the target. The speeds of the missile and target are assumed to remain constant throughout the engagement. Lateral acceleration, obtained from the guidance law, is applied to change the path of the missile. The kinematic equations for engagements in the horizontal plane are derived in the relative velocity space. Some analytical results for the capture region are obtained for non-maneuvering and maneuvering targets. For non-maneuvering targets it is enough for the navigation gain to be a constant to intercept the target, while for maneuvering targets a time varying navigation gain is needed for interception. These results are then verified through numerical simulations.
Resumo:
Differential Unitary Space-Time Block codes (STBCs) offer a means to communicate on the Multiple Input Multiple Output (MIMO) channel without the need for channel knowledge at both the transmitter and the receiver. Recently Yuen-Guan-Tjhung have proposed Single-Symbol-Decodable Differential Space-Time Modulation based on Quasi-Orthogonal Designs (QODs) by replacing the original unitary criterion by a scaled unitary criterion. These codes were also shown to perform better than differential unitary STBCs from Orthogonal Designs (ODs). However the rate (as measured in complex symbols per channel use) of the codes of Yuen-Guan-Tjhung decay as the number of transmit antennas increase. In this paper, a new class of differential scaled unitary STBCs for all even number of transmit antennas is proposed. These codes have a rate of 1 complex symbols per channel use, achieve full diversity and moreover they are four-group decodable, i.e., the set of real symbols can be partitioned into four groups and decoding can be done for the symbols in each group separately. Explicit construction of multidimensional signal sets that yield full diversity for this new class of codes is also given.
Resumo:
Recently Li and Xia have proposed a transmission scheme for wireless relay networks based on the Alamouti space time code and orthogonal frequency division multiplexing to combat the effect of timing errors at the relay nodes. This transmission scheme is amazingly simple and achieves a diversity order of two for any number of relays. Motivated by its simplicity, this scheme is extended to a more general transmission scheme that can achieve full cooperative diversity for any number of relays. The conditions on the distributed space time block code (DSTBC) structure that admit its application in the proposed transmission scheme are identified and it is pointed out that the recently proposed full diversity four group decodable DST-BCs from precoded co-ordinate interleaved orthogonal designs and extended Clifford algebras satisfy these conditions. It is then shown how differential encoding at the source can be combined with the proposed transmission scheme to arrive at a new transmission scheme that can achieve full cooperative diversity in asynchronous wireless relay networks with no channel information and also no timing error knowledge at the destination node. Finally, four group decodable distributed differential space time block codes applicable in this new transmission scheme for power of two number of relays are also provided.
Resumo:
The differential encoding/decoding setup introduced by Kiran et at, Oggier et al and Jing et al for wireless relay networks that use codebooks consisting of unitary matrices is extended to allow codebooks consisting of scaled unitary matrices. For such codebooks to be used in the Jing-Hassibi protocol for cooperative diversity, the conditions that need to be satisfied by the relay matrices and the codebook are identified. A class of previously known rate one, full diversity, four-group encodable and four-group decodable Differential Space-Time Codes (DSTCs) is proposed for use as Distributed DSTCs (DDSTCs) in the proposed set up. To the best of our knowledge, this is the first known low decoding complexity DDSTC scheme for cooperative wireless networks.
Resumo:
A novel dodecagonal space vector structure for induction motor drive is presented in this paper. It consists of two dodecagons, with the radius of the outer one twice the inner one. Compared to existing dodecagonal space vector structures, to achieve the same PWM output voltage quality, the proposed topology lowers the switching frequency of the inverters and reduces the device ratings to half. At the same time, other benefits obtained from existing dodecagonal space vector structure are retained here. This includes the extension of the linear modulation range and elimination of all 6+/-1 harmonics (n=odd) from the phase voltage. The proposed structure is realized by feeding an open-end winding induction motor with two conventional three level inverters. A detailed calculation of the PWM timings for switching the space vector points is also presented. Simulation and experimental results indicate the possible application of the proposed idea for high power drives.
Resumo:
It is known that by employing space-time-frequency codes (STFCs) to frequency selective MIMO-OFDM systems, all the three diversity viz spatial, temporal and multipath can be exploited. There exists space-time-frequency block codes (STFBCs) designed using orthogonal designs with constellation precoder to get full diversity (Z.Liu, Y.Xin and G.Giannakis IEEE Trans. Signal Processing, Oct. 2002). Since orthogonal designs of rate one exists only for two transmit antennas, for more than two transmit antennas STFBCs of rate-one and full-diversity cannot be constructed using orthogonal designs. This paper presents a STFBC scheme of rate one for four transmit antennas designed using quasi-orthogonal designs along with co-ordinate interleaved orthogonal designs (Zafar Ali Khan and B. Sundar Rajan Proc: ISIT 2002). Conditions on the signal sets that give full-diversity are identified. Simulation results are presented to show the superiority of our codes over the existing ones.
Resumo:
This paper presents a systematic construction of high-rate and full-diversity space-frequency block codes for MIMO-OFDM systems. While all prior constructions offer only a maximum rate of one complex symbol per channel use, our construction yields rate equal to the number of transmit antennas and simultaneously achieves full-diversity. The proposed construction works for arbitrary number of transmit antennas and arbitrary channel power delay profile. A key step in this construction is the generalization of the stacked matrix code design criteria given by Bolcskei et.al., (IEEE WCNC 2000). Explicit equivalence of our generalized code design criteria with the Hadamard-product based criteria of W. Su et.al., (lEEE Trans. Sig. Proc. Nov 2003) is established and new high-rate codes are constructed using our criteria.
Resumo:
The problem of constructing space-time (ST) block codes over a fixed, desired signal constellation is considered. In this situation, there is a tradeoff between the transmission rate as measured in constellation symbols per channel use and the transmit diversity gain achieved by the code. The transmit diversity is a measure of the rate of polynomial decay of pairwise error probability of the code with increase in the signal-to-noise ratio (SNR). In the setting of a quasi-static channel model, let n(t) denote the number of transmit antennas and T the block interval. For any n(t) <= T, a unified construction of (n(t) x T) ST codes is provided here, for a class of signal constellations that includes the familiar pulse-amplitude (PAM), quadrature-amplitude (QAM), and 2(K)-ary phase-shift-keying (PSK) modulations as special cases. The construction is optimal as measured by the rate-diversity tradeoff and can achieve any given integer point on the rate-diversity tradeoff curve. An estimate of the coding gain realized is given. Other results presented here include i) an extension of the optimal unified construction to the multiple fading block case, ii) a version of the optimal unified construction in which the underlying binary block codes are replaced by trellis codes, iii) the providing of a linear dispersion form for the underlying binary block codes, iv) a Gray-mapped version of the unified construction, and v) a generalization of construction of the S-ary case corresponding to constellations of size S-K. Items ii) and iii) are aimed at simplifying the decoding of this class of ST codes.