80 resultados para Gray Iron Foundry Industry.
Resumo:
Iron deficiency has been found to occur in Neurospora crassa grown in sole nitrate medium, even when levels of iron, normal with respect to the usual ammonium nitrate medium, were provided. Under this condition, mycelial nitrate reductase and catalase levels were high, there was inhibition of growth, and there was accumulation of an iron-binding compound and nitrite in the culture filtrate. These were counteracted by increasing the iron level of the sole nitrate medium, except that the catalase level increased still further. Evidence is presented for the control of nitrate reductase by iron.
Resumo:
Neurospora crassa Em 5297a secretes an ironbinding compound (X) when grown under conditions of iron deficiency. Decreasing the concentration of iron in the medium results in an increase of X and a corresponding fall in catalase activity. Under iron-deficient conditions the production of X precedes the fall in catalase activity. The iron complex of the iron-binding compound (XFe) can act as a good iron source to the organism to maintain normal growth and catalase activity, even though the iron is held very firmly in the chemical sense. While ferrichrome is as potent as XFe, as an iron source to N. crassa, ferrichrome A and ferric acethydroxamate are only partially beneficial. XFe, when provided as the sole iron source, also influences nonheme iron enzyme activities like succinic dehydrogenase and aconitase. XFe is permeable to N. crassa mycelia and is incorporated at a much faster rate compared with that from a simple chelate such as ferric citrate.
Resumo:
Diphenyl sulphoxide(DPSO) and dimethyl sulphoxide(DMSO) complexes of iron(II) having the composition [Fe(DPSO)6](ClO4)2, Fe(DPSO)2Cl2, Fe(DPSO)3Br2, Fe(DPSO)4I2, [Fe (DMSO)3Cl2]. DMSO and [Fe(DMSO)3Br2]. DMSO and DPSO complexes of iron(III), Fe(DPSO)2 Cl3 have been prepared and their physico-chemical properties studied. Their magnetic moments at room temperature show them to be spin-free complexes. The i.r. spectra reveal that oxygen is the donor atom in all the complexes. The electronic spectra of iron(II) complexes indicate octahedral coordination for the metal ion. A salt like structure [Fe(DPSO)4Cl2][FeCl4], is suggested for the iron (III) complex, where the cationic species has distorted octahedral structure while the anionic species has tetrahedral structure.
Resumo:
Iron(II) complexes of 1-phenyl-2,3-dimethyl-5-pyrazolone (antipyrine, Apy) and pyridine N-oxide (PyO), having the formulae [Fe(Apy)6](ClO4)2, Fe(Apy)2Cl2, Fe(Apy)2Br2, Fe(Apy)4I2, [Fe(PyO)3Cl3]2 . 2H2O, [Fe(PyO)Cl2 . 2H2O]2, [Fe(PyO)3Br2]2 and [Fe(PyO)6]I2 have been prepared and characterized. [Fe(Apy)6](ClO4)2 in nitrobenzene and [Fe(PyO)6]I2 in acetonitrile behave as 1:2 electrolytes; Fe(Apy)4I2 shows considerable dissociation while Fe(Apy)2Cl2 and Fe(Apy)2Br2 are non-electrolytes and monomeric in nitrobenzene. [Fe(PyO)3Cl2]2 . 2H2O and [Fe(PyO)3Br2]2 in nitrobenzene and [Fe(PyO)Cl2 . 2H2O]2 in acetonitrile behave as non-electrolytes. All the complexes are spin-free. The i.r. spectra show that the oxygens of the CO and NO groups are the donors in the Apy and PyO complexes. A large decrease in the NO stretching frequency in [Fe(PyO)Cl2. 2H2O]2 suggests PyO acts as a bridge forming a binuclear complex. The chloro and the bromo complexes of Apy have been assigned pseudo tetrahedral structures while the rest of the complexes have octahedral or near octahedral configurations around the iron(II) on the basis of the magnetic moments and the electronic transitions.
Resumo:
We propose two texture-based approaches, one involving Gabor filters and the other employing log-polar wavelets, for separating text from non-text elements in a document image. Both the proposed algorithms compute local energy at some information-rich points, which are marked by Harris' corner detector. The advantage of this approach is that the algorithm calculates the local energy at selected points and not throughout the image, thus saving a lot of computational time. The algorithm has been tested on a large set of scanned text pages and the results have been seen to be better than the results from the existing algorithms. Among the proposed schemes, the Gabor filter based scheme marginally outperforms the wavelet based scheme.
Resumo:
4,4prime-Bipyridyl (4,4prime-bipy) complexes of ferrous salts of the Fe(4,4prime-bipy)x(anion)y type (where x or y=1 or 2) and of ferric salts of the Fe(4,4prime-bipy)m(anion)n type (where m=1 or 2 and n=3) have been synthesised. Elemental analyses, i.r. and electronic spectra, magnetic and Mössbauer studies have been performed to characterize the complexes. 4,4prime-Bipy and some anions are inferred to act as bridging ligands. The magnetic moments, electronic and Mössbauer spectra suggest that the complexes are of high spin type with distorted octahedral structures. The value of the isomer shift and quadrupole splitting are discussed in terms of bonding of the ligand and anions.
Resumo:
Iron is a major pollutant released as a by-product during several industrial operations especially during acid mining of metal ores. In this paper, the use of Bengal gram husk (husk of channa dal, Cicer arientinum) in the biosorption of Fe(III) from aqueous solutions is discussed. Parameters like agitation time, adsorbent dosage and pH were studied at different Fe(Ill) concentrations. The adsorption data fit well with Langmuir and Freundlich isotherm models. The adsorption capacity (q(max)) calculated from the Langmuir isotherm was 72.16 mg of Fe(III)/g of the biosorbent at an initial pH of 2.5. Desorption Studies were performed at different concentrations of hydrochloric acid showing that quantitative recovery of the metal ion is possible. The infrared spectra of the biomass before and after treatment with Fe(III), revealed that hydroxyl, carboxyl and amide bonds are involved in the uptake of Fe(III) ions.
Resumo:
Sensing and photocatalysis of textile industry effluents such as dyes using mesoporous anatase titania nanowires are discussed here.Spectroscopic investigations show that the titania nanowires preferentially sense cationic (e.g. Methylene Blue, Rhodamine B) over anionic (e.g. Orange G, Remazol Brilliant Blue R) dyes. The adsorbed dye concentration on titania nanowires increased with increase in nanowire dimensions and dye solution pH. Electrochemical sensing directly corroborated spectroscopic findings. Electrochemical detection sensitivity for Methylene Blue increased by more than two times in magnitude with tripling of nanowire average length. Photodegradation of Methylene Blue using titania nanowires is also more efficient than the commercial P25-TiO2 nanopowders. Keeping illumination protocol and observation times constant, the Methylene Blue concentration in solution decreased by only 50% in case of P25-TiO2 nanoparticles compared to a 100% decrease for titania nanowires. Photodegradation was also found to be function of exposure times and dye solution pH.Excellent sensing ability and photocatalytic activity of the titania nanowires is attributed to increased effective reaction area of the controlled nanostructured morphology. (C) 2010 Elsevier B.V. All rights reserved.