230 resultados para Grandmont, Order of.
Resumo:
This paper discusses the consistent regularization property of the generalized α method when applied as an integrator to an initial value high index and singular differential-algebraic equation model of a multibody system. The regularization comes from within the discretization itself and the discretization remains consistent over the range of values the regularization parameter may take. The regularization involves increase of the smallest singular values of the ill-conditioned Jacobian of the discretization and is different from Baumgarte and similar techniques which tend to be inconsistent for poor choice of regularization parameter. This regularization also helps where pre-conditioning the Jacobian by scaling is of limited effect, for example, when the scleronomic constraints contain multiple closed loops or singular configuration or when high index path constraints are present. The feed-forward control in Kane's equation models is additionally considered in the numerical examples to illustrate the effect of regularization. The discretization presented in this work is adopted to the first order DAE system (unlike the original method which is intended for second order systems) for its A-stability and same order of accuracy for positions and velocities.
Resumo:
The condition for the observability of CESR in superconducting thin films is analysed taking into account the finiteness of the flux penetration depth. We have explicitly evaluated the path-dependent phase mixing factor occuring in the expression for power absorption. The calculated line width turns out to be of the order of, or larger than, the nominal resonance frequency for the experimentally realisable choice of parameters.
Resumo:
This paper reports the basic design of a new six component force balance system using miniature piezoelectric accelerometers to measure all aerodynamic forces and moments for a test model in hypersonic shock tunnel (HST2). Since the flow duration in a hypersonic shock tunnel is of the order of $1$ ms, the balance system [1] uses fast response accelerometers (PCB Piezotronics; frequency range of 1-10 kHz) for obtaining the aerodynamic data. The alance system has been used to measure the basic aerodynamic forces and moments on a missile shaped body at Mach $8$ in the IISc hypersonic shock tunnel. The experimentally measured values match well with theoretical predictions.
Resumo:
We apply our technique of using a Rb-stabilized ring-cavity resonator to measure the frequencies of various spectral components in the 555.8-nm 1S0-->3P1 line of Yb. We determine the isotope shifts with 60 kHz precision, which is an order-of-magnitude improvement over the best previous measurement on this line. There are two overlapping transitions, 171Yb(1/2-->3/2) and 173Yb(5/2-->3/2), which we resolve by applying a magnetic field. We thus obtain the hyperfine constants in the 3P1 state of the odd isotopes with a significantly improved precision. Knowledge of isotope shifts and hyperfine structure should prove useful for high-precision calculations in Yb necessary to interpret ongoing experiments testing parity and time-reversal symmetry violation in the laws of physics.
Resumo:
A ratio transformer method suitable for the measurement of the dielectric constant of highly conducting liquids is described. The resistance between the two plates of the capacitor can be as low as 2 k Omega . In this method variations in this low resistance will not give any error in capacitance measurement. One of the features of this method is the simplicity in balancing the resistance, using a LDR (light dependent resistor), without influencing the independent capacitance measurement. The ratio transformer enables the ground capacitances to be eliminated. The change in leakage inductance of the ratio transformer while changing the ratios is also taken into account. The capacitance of a dielectric cell of the order of 50 pF can be measured from 1000 Hz to 100 kHz with a resolution of 0.06 pF. The electrode polarisation problem is also discussed.
Resumo:
The possibility of observing gravitational spin precession due to spin-orbit coupling in a binary pulsar system is considered. An analysis is presented which can aid in delineating the relevant physical effects from pulse-structure data. In this analysis, it is assumed that the pulsar radiation emanates from a cone whose axis is tilted with respect to the axis of rotation. It is found that the time-averaged pulse width and polarization sweep vary periodically with time and that this variation has a periodicity of the order of the spin-precession frequency averaged over a complete revolution. It is concluded that for an orbital period of about 180 years, it suffices to measure polarization data with an accuracy of a few parts in 100 over a period of six months to a year in order to uncover the effects of spin precession. The consistency of the analysis is checked, and the calculations are applied to a recently discovered binary pulsar.
Resumo:
A detailed crystallographic investigation of N-methylacetamide complexes of Li, Na, K, Mg and Ca has been made in view of its importance in the coordination chemistry and biochemistry of alkali and alkaline earth metals. The metal ions bind to the amide oxygen causing an increase in the carbonyl distance and a proportionate decrease in the central C-N bond distance. The decrease in the central C-N distance is accompanied by an increase in the distance of the adjacent C-C bond and a decrease in the adjacent C-N bond distance. The metal ion generally deviates from the direction of the lone pair of the carbonyl oxygen and also from the plane of the peptide, the out-of-plane deviation varying with the ionic potential of the cation. The metal-oxygen distance in alkali and alkaline earth metal complexes of a given coordination number also varies with the ionic potential of the cation, as does the strength of binding of the cations to the amide. The amide molecules are essentially planar in these complexes, as expected from the increased bond order of the central C-N bond. The NH bonds of the amide are generally hydrogen bonded to anions. The structures of the amide complexes are compared with those of other oxygen donor complexes of alkali and alkaline earth metals. The structural study described here also provides a basis for the interpretation of results from spectroscopic and theoretical investigations of the interaction of alkali and alkaline earth metal cations with amides.
Resumo:
The rarity of occurrence of cis peptide units is only partially explained by the higher intrinsic energy of the cis over the trans form, which provides a probability of 0·01 for cis peptide units to occur. An additional factor is the conformational restriction imposed by the occurrence of a cis peptide unit in a chain of trans units. Taking a section of three peptide units having the sequences trans-trans-trans (ttt) and trans-cis-trans (tct), conformational energy calculations indicate that the latter can occur only to an extent of 0·1%, unless there occurs the sequence X-Pro, in which case it is of the order of 30%. This explains the extreme rarity of cis peptide units, in general; however, it follows that even with non-prolyl residues, cis peptide units are not forbidden, but can occur in some rare examples and should be looked for.
Resumo:
Thiophosphoryl fluoride and phosphoryl fluoride have been found to initiate the polymerisation of tetrahydrofuran. The living polymer formed has a high molecular weight of the order of a million and the density is found to be between 0.98 - 1.02 g/cc. A cationic mechanism for the polymerisation has been proposed.
Resumo:
This paper deals with studies on the dilute solution properties of methyl methacrylate�acrylonitrile copolymer of 0.289 mole fraction (mf) of acrylonitrile composition. Mark�Houwink parameters for this copolymer have been evaluated in acetonitrile (MeCN), 2-butanone (MEK), dimethylformamide (DMF) and γ-butyrolactone (γ-BL). The solvent power is found to be in the order of MEK < MeCN < DMF < γ-BL at 30°C. Herein, probably for the first time, the steric factor for the copolymer is found to be lower than that for the parent homopolymers and the excess interaction parameter, �AB is found to be negative. This probably suggests that the units are compatible to each other.
Resumo:
We study the vortex matter phase diagram of a layered superconductor in the presence of columnar pinning defects, tilted with respect to the normal to the layers. We use numerical minimization of the free energy written as a functional of the time-averaged vortex density of the Ramakrishnan-Yussouff form, supplemented by the appropriate pinning potential. We study the case where the pin density is smaller than the areal vortex density. At lower pin concentrations, we find, for temperatures of the order of the melting temperature of the unpinned lattice, a Bose glass type phase which at lower temperatures converts, via a first-order transition, to a Bragg glass, while, at higher temperatures, it crosses over to an interstitial liquid. At somewhat higher concentrations, no transition to a Bragg glass is found even at the lowest temperatures studied. While qualitatively the behavior we find is similar to that obtained using the same procedures for columnar pins normal to the layers, there are important and observable quantitative differences, which we discuss.
Resumo:
Measurements of both the velocity and the temperature field have been made in the thermal layer that grows inside a turbulent boundary layer which is subjected to a small step change in surface heat flux. Upstream of the step, the wall heat flux is zero and the velocity boundary layer is nearly self-preserving. The thermal-layer measurements are discussed in the context of a self-preserving analysis for the temperature disturbance which grows underneath a thick external turbulent boundary layer. A logarithmic mean temperature profile is established downstream of the step but the budget for the mean-square temperature fluctuations shows that, in the inner region of the thermal layer, the production and dissipation of temperature fluctuations are not quite equal at the furthest downstream measurement station. The measurements for both the mean and the fluctuating temperature field indicate that the relaxation distance for the thermal layer is quite large, of the order of 1000θ0, where θ0 is the momentum thickness of the boundary layer at the step. Statistics of the thermal-layer interface and conditionally sampled measurements with respect to this interface are presented. Measurements of the temperature intermittency factor indicate that the interface is normally distributed with respect to its mean position. Near the step, the passive heat contaminant acts as an effective marker of the organized turbulence structure that has been observed in the wall region of a boundary layer. Accordingly, conditional averages of Reynolds stresses and heat fluxes measured in the heated part of the flow are considerably larger than the conventional averages when the temperature intermittency factor is small.
Resumo:
Qualitative and quantitative assessment of the fungal flora of rice field soils yielded 102 species of fungi belonging to 44 genera, when dilution plate, soil plate, root-washing and baiting techniques were employed. The order of efficacy of the methods used was: root-washing > soil plate > dilution plate > baiting. Baiting method, used specifically to isolate aquatic and keratinophilic fungi from soils was studied in detail with reference to the former. Qualitatively, corn leaf bait was the most efficient one while pine pollens and hemp seeds were least efficient. A semi-quantitative method was employed to study the statistically significant differences among the different factors used. Among the keratinophilic baits,viz., human hair, fowl’s feather and wool, wool bait was least efficient. The results of this investigation are discussed.
Resumo:
Proximity of molecules is a crucial factor in many solid- state photochemical processes.'S2 The biomolecular photodimerization reactions in the solid state depend on the relative geometry of reactant molecules in the crystal lattice with center-to-center distance of nearest neighbor double bonds of the order of ca. 4 A. This fact emanates from the incisive studies of Schmidt and Cohen.2 One of the two approaches to achieve this distance requirement is the so-called "Crystal-Engineering" of structures, which essentially involves the introduction of certain functional groups that display in-plane interstacking interactions (Cl...Cl, C-He-0, etc.) in the crystal The chloro group is by far the most successful in promoting the /3- packing m ~ d e ,th~o,u~gh recent studies have shown its limitations? Another approach involves the use of constrained media in which the reactants could hopefully be aligned.
Resumo:
In this paper we give the performance of MQAM OFDM based WLAN in presence of single and multiple channels Zigbee interference. An analytical model for getting symbol error rate (SER) in presence of single and multiple channel Zigbee interference in AWGN and Rayleigh fading channel for MQAM OFDM system is given. Simulation results are compared with analytical symbol error rate (SER) of the MQAM-OFDM system. For analysis we have modeled the Zigbee interference using the power spectral density (PSD) of OQPSK modulation and finding the average interference power for each sub-carrier of the OFDM system. Then we have averaged the SER over all WLAN sub-carriers. Simulations closely match with the analytical models. It is seen from simulation and analytical results that performance of WLAN is severely affected by Zigbee interference. Symbol error rate (SER) for 16QAM and 64QAM OFDM system is of order of 10(-2) for SIR (signal to interference ratio) of 20dB and 30dB respectively in presence of single Zigbee interferer inside the WLAN frequency band for Rayleigh fading channel. For SIR values more than 30dB and 40dB the SER approaches the SER without interference for 16QAM and 64QAM OFDM system respectively.