218 resultados para Gradient bifurcation problem
Resumo:
A theoretical study on the propagation of plane waves in the presence of a hot mean flow in a uniform pipe is presented. The temperature variation in the pipe is taken to be a linear temperature gradient along the axis. The theoretical studies include the formulation of a wave equation based on continuity, momentum, and state equation, and derivation of a general four-pole matrix, which is shown to yield the well-known transfer matrices for several other simpler cases.
Resumo:
This paper deals with the interpretation of the discrete-time optimal control problem as a scattering process in a discrete medium. We treat the discrete optimal linear regulator, constrained end-point and servo and tracking problems, providing a unified approach to these problems. This approach results in an easy derivation of the desired results as well as several new ones.
Resumo:
A direct transform technique is found to be most suitable for attacking two-dimensional diffraction problems. As a first example of the application of the technique, the well-known Sommerfeld problem is reconsidered and the solution of the problem of diffraction, by a half-plane, of a cylindrical pulse is made use of in deducing the solution of the problem of diffraction of a plane wave by a soft half-plane. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
A microbeam testing geometry is designed to study the variation in fracture toughness across a compositionally graded NiAl coating on a superalloy substrate. A bi-material analytical model of fracture is used to evaluate toughness by deconvoluting load-displacement data generated in a three-point bending test. It is shown that the surface layers of a diffusion bond coat can be much more brittle than the interior despite the fact that elastic modulus and hardness do not display significant variations. Such a gradient in toughness allows stable crack propagation in a test that would normally lead to unstable fracture in a homogeneous, brittle material. As the crack approaches the interface, plasticity due to the presence of Ni3Al leads to gross bending and crack bifurcation.
An FETI-preconditioned conjuerate gradient method for large-scale stochastic finite element problems
Resumo:
In the spectral stochastic finite element method for analyzing an uncertain system. the uncertainty is represented by a set of random variables, and a quantity of Interest such as the system response is considered as a function of these random variables Consequently, the underlying Galerkin projection yields a block system of deterministic equations where the blocks are sparse but coupled. The solution of this algebraic system of equations becomes rapidly challenging when the size of the physical system and/or the level of uncertainty is increased This paper addresses this challenge by presenting a preconditioned conjugate gradient method for such block systems where the preconditioning step is based on the dual-primal finite element tearing and interconnecting method equipped with a Krylov subspace reusage technique for accelerating the iterative solution of systems with multiple and repeated right-hand sides. Preliminary performance results on a Linux Cluster suggest that the proposed Solution method is numerically scalable and demonstrate its potential for making the uncertainty quantification Of realistic systems tractable.
Resumo:
In this paper, pattern classification problem in tool wear monitoring is solved using nature inspired techniques such as Genetic Programming(GP) and Ant-Miner (AM). The main advantage of GP and AM is their ability to learn the underlying data relationships and express them in the form of mathematical equation or simple rules. The extraction of knowledge from the training data set using GP and AM are in the form of Genetic Programming Classifier Expression (GPCE) and rules respectively. The GPCE and AM extracted rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in GP evolved GPCE and AM based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The performance of the data classification using GP and AM is as good as the classification accuracy obtained in the earlier study.
Resumo:
The conventional Clauser-chart method for determination of local skin friction in zero or weak pressure-gradient turbulent boundary layer flows fails entirely in strong pressure-gradient situations. This failure occurs due to the large departure of the mean velocity profile from the universal logarithmic law upon which the conventional Clauser-chart method is based. It is possible to extend this method,even for strong pressure-gradient situations involving equilibrium or near-equilibrium turbulent boundary layers by making use of the so-called non-universal logarithmic laws. These non-universal log laws depend on the local strength of the pressure gradient and may be regarded as perturbations of the universal log law.The present paper shows that the modified Clauser-chart method, so developed, yields quit satisfactory results in terms of estimation of local skin friction in strongly accelerated or retarded equilibrium and near-equilibrium turbulent boundary layers that are not very close to relaminarization or separation.
Resumo:
Though it has been established that ZnO tetrapods can be synthesized by heating Zn in air, it is advantageous to grow tetrapods with legs of different morphologies with different lengths. Here, we report the large scale synthesis of ZnO tetrapods by heating Zn in air ambient. The parameters that control the diameter, length, and morphology of tetrapods are identified. It is shown that the morphology and dimensions of the tetrapods depend not only on the vaporization temperature but also on the temperature gradient of the furnace. The controlled synthesis procedure and the key parameters that influence the morphology are discussed.
Resumo:
Swarm Intelligence techniques such as particle swarm optimization (PSO) are shown to be incompetent for an accurate estimation of global solutions in several engineering applications. This problem is more severe in case of inverse optimization problems where fitness calculations are computationally expensive. In this work, a novel strategy is introduced to alleviate this problem. The proposed inverse model based on modified particle swarm optimization algorithm is applied for a contaminant transport inverse model. The inverse models based on standard-PSO and proposed-PSO are validated to estimate the accuracy of the models. The proposed model is shown to be out performing the standard one in terms of accuracy in parameter estimation. The preliminary results obtained using the proposed model is presented in this work.
Resumo:
Experimental characterization of high dimensional dynamic systems sometimes uses the proper orthogonal decomposition (POD). If there are many measurement locations and relatively fewer sensors, then steady-state behavior can still be studied by sequentially taking several sets of simultaneous measurements. The number required of such sets of measurements can be minimized if we solve a combinatorial optimization problem. We aim to bring this problem to the attention of engineering audiences, summarize some known mathematical results about this problem, and present a heuristic (suboptimal) calculation that gives reasonable, if not stellar, results.
Resumo:
We discuss a technique for solving the Landau-Zener (LZ) problem of finding the probability of excitation in a two-level system. The idea of time reversal for the Schrodinger equation is employed to obtain the state reached at the final time and hence the excitation probability. Using this method, which can reproduce the well-known expression for the LZ transition probability, we solve a variant of the LZ problem, which involves waiting at the minimum gap for a time t(w); we find an exact expression for the excitation probability as a function of t(w). We provide numerical results to support our analytical expressions. We then discuss the problem of waiting at the quantum critical point of a many-body system and calculate the residual energy generated by the time-dependent Hamiltonian. Finally, we discuss possible experimental realizations of this work.
Resumo:
Let G = (V,E) be a simple, finite, undirected graph. For S ⊆ V, let $\delta(S,G) = \{ (u,v) \in E : u \in S \mbox { and } v \in V-S \}$ and $\phi(S,G) = \{ v \in V -S: \exists u \in S$ , such that (u,v) ∈ E} be the edge and vertex boundary of S, respectively. Given an integer i, 1 ≤ i ≤ ∣ V ∣, the edge and vertex isoperimetric value at i is defined as b e (i,G) = min S ⊆ V; |S| = i |δ(S,G)| and b v (i,G) = min S ⊆ V; |S| = i |φ(S,G)|, respectively. The edge (vertex) isoperimetric problem is to determine the value of b e (i, G) (b v (i, G)) for each i, 1 ≤ i ≤ |V|. If we have the further restriction that the set S should induce a connected subgraph of G, then the corresponding variation of the isoperimetric problem is known as the connected isoperimetric problem. The connected edge (vertex) isoperimetric values are defined in a corresponding way. It turns out that the connected edge isoperimetric and the connected vertex isoperimetric values are equal at each i, 1 ≤ i ≤ |V|, if G is a tree. Therefore we use the notation b c (i, T) to denote the connected edge (vertex) isoperimetric value of T at i. Hofstadter had introduced the interesting concept of meta-fibonacci sequences in his famous book “Gödel, Escher, Bach. An Eternal Golden Braid”. The sequence he introduced is known as the Hofstadter sequences and most of the problems he raised regarding this sequence is still open. Since then mathematicians studied many other closely related meta-fibonacci sequences such as Tanny sequences, Conway sequences, Conolly sequences etc. Let T 2 be an infinite complete binary tree. In this paper we related the connected isoperimetric problem on T 2 with the Tanny sequences which is defined by the recurrence relation a(i) = a(i − 1 − a(i − 1)) + a(i − 2 − a(i − 2)), a(0) = a(1) = a(2) = 1. In particular, we show that b c (i, T 2) = i + 2 − 2a(i), for each i ≥ 1. We also propose efficient polynomial time algorithms to find vertex isoperimetric values at i of bounded pathwidth and bounded treewidth graphs.
Resumo:
A Finite Element Method based forward solver is developed for solving the forward problem of a 2D-Electrical Impedance Tomography. The Method of Weighted Residual technique with a Galerkin approach is used for the FEM formulation of EIT forward problem. The algorithm is written in MatLAB7.0 and the forward problem is studied with a practical biological phantom developed. EIT governing equation is numerically solved to calculate the surface potentials at the phantom boundary for a uniform conductivity. An EIT-phantom is developed with an array of 16 electrodes placed on the inner surface of the phantom tank filled with KCl solution. A sinusoidal current is injected through the current electrodes and the differential potentials across the voltage electrodes are measured. Measured data is compared with the differential potential calculated for known current and solution conductivity. Comparing measured voltage with the calculated data it is attempted to find the sources of errors to improve data quality for better image reconstruction.
Resumo:
In this work, we explore simultaneous geometry design and material selection for statically determinate trusses by posing it as a continuous optimization problem. The underlying principles of our approach are structural optimization and Ashby’s procedure for material selection from a database. For simplicity and ease of initial implementation, only static loads are considered in this work with the intent of maximum stiffness, minimum weight/cost, and safety against failure. Safety of tensile and compression members in the truss is treated differently to prevent yield and buckling failures, respectively. Geometry variables such as lengths and orientations of members are taken to be the design variables in an assumed layout. Areas of cross-section of the members are determined to satisfy the failure constraints in each member. Along the lines of Ashby’s material indices, a new design index is derived for trusses. The design index helps in choosing the most suitable material for any geometry of the truss. Using the design index, both the design space and the material database are searched simultaneously using gradient-based optimization algorithms. The important feature of our approach is that the formulated optimization problem is continuous, although the material selection from a database is an inherently discrete problem. A few illustrative examples are included. It is observed that the method is capable of determining the optimal topology in addition to optimal geometry when the assumed layout contains more links than are necessary for optimality.
Resumo:
This work addresses the optimum design of a composite box-beam structure subject to strength constraints. Such box-beams are used as the main load carrying members of helicopter rotor blades. A computationally efficient analytical model for box-beam is used. Optimal ply orientation angles are sought which maximize the failure margins with respect to the applied loading. The Tsai-Wu-Hahn failure criterion is used to calculate the reserve factor for each wall and ply and the minimum reserve factor is maximized. Ply angles are used as design variables and various cases of initial starting design and loadings are investigated. Both gradient-based and particle swarm optimization (PSO) methods are used. It is found that the optimization approach leads to the design of a box-beam with greatly improved reserve factors which can be useful for helicopter rotor structures. While the PSO yields globally best designs, the gradient-based method can also be used with appropriate starting designs to obtain useful designs efficiently. (C) 2006 Elsevier Ltd. All rights reserved.