83 resultados para Grade 9
Resumo:
The structural state of K-feldspars in the quartzofeldspathic gneisses, charnockites, metapelites and pegmatites from the southern Kamataka, northern Tamil Nadu and southern Kerala high-grade regions of southern India has been characterized using petrographic and powder X-ray diffraction methods. The observed distribution pattern of structural state with a preponderance of disordered K-feldspar polymorphs in granulites compared to the ordered microclines in the amphibolite facies rocks is interpreted to reflect principally the varying H2O contents in the metamorphic-metasomatic fluids across metamorphic grade. The K-feldspars in the pegmatites of granitic derivation and in a pegmatite of inferred metamorphic origin also point to the important role of aqueous fluids in their structural state.
Resumo:
NaBH4 reduction of a cage dione proceeds in a stereospecific fashion to give the endo,endo-diol. This reactivity is related to the crystal structure.
Resumo:
We describe the design and synthesis of new lithium ion conductors with the formula, LiSr(1.65)rectangle(0.35)B(1.3)B'O-1.7(9) (rectangle = vacancy; B = Ti, Zr; B' = Nb, Ta), on the basis of a systematic consideration of the composition-structure-property correlations in the well-known lithium-ion conductor, La-(2/3-x)Li(3x)rectangle((1/3)-2x)TiO3 (I), as well as the perovskite oxides in Li-A-B,B'-O (A = Ca, Sr, Ba; B = Ti, Zr; B' = Nb, Ta) systems. A high lithium-ion conductivity of ca. 0.12 S/cm at 360 degrees C is exhibited by LiSr(1.65)rectangle(0.35)Ti(1.3)Ta(1.7)O(9) (III) and LiSr(1.65)rectangle(0.35)Zr(1.3)Ta(1.7)O(9) (IV), of which the latter containing stable Zr(IV) and Ta(V) oxidation states is likely to be a candidate electrolyte material for all-solid-state lithium battery application. More importantly, we believe the approach described here could be extended to synthesize newer, possibly better, lithium ion conductors.
Resumo:
2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-hexadecafluorodecyl 1,10-ditosylate and its precursors were synthesized and characterized by H-1- and F-19-NMR spectroscopic methods and X-ray crystallography. These compounds are building blocks for the syntheses of the surfactants containing polyperfluoromethylene spacer. The molecule has extended all-trans conformation with molecular symmetry (1) over bar (C-i). There is a reasonably strong C-H ... O interaction in the crystal and there are two F ... F intermolecular contact distances less than the sum of van der Waals radii. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Marked ball grinding rests were carried out in the laboratory with a low grade phosphate ore under different experimental conditions. Two types of balls were used, namely high carbon low alloy (HCLA) cast steel and high chrome cast iron. Results of marked ball grinding tests indicated that ball wear increased with time and showed a sharp increase for wet grinding over dry grinding. Ball wear under wet grinding conditions was also influenced by the gaseous atmosphere in the mill. The grinding ball materials could be arranged in the following order with respect to their overall wear resistance: High chrome cast iron > HCLA cast steel balls Methods to minimize ball wear through control of mill atmosphere and addition of flotation reagents are discussed. Effect of grinding media and additions of flotation reagents during grinding on phosphate ore flotation are also discussed. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
An enantiospecific approach to functionalised C-aromatic-8,9-seco-taxanes starting from the readily available monoterpene (R)-carvone is described.
Resumo:
The first enantiospecific total synthesis of (-)-9-pupukeanone, starting from (R)-carvone employing a combination of Michael-Michael reaction and an intramolecular rhodium carbenoid C H insertion reaction as key steps, is described. (C) 2002 Elsevier Science Ltd. All rights reserved.
Electrical characterization of Ba(Zr0.1Ti0.9)O-3 thin films grown by pulsed laser ablation technique
Resumo:
In situ annealed thin films of ferroelectric Ba(Zr0.1Ti0.9)O-3 were deposited on platinum substrates by pulsed laser ablation technique. The as grown films were polycrystalline in nature without the evidence of any secondary phases. The polarization hysteresis loop confirmed the ferroelectricity, which was also cross-checked with the capacitance-voltage characteristics. The remnant polarization was about 5.9 muC cm(-2) at room temperature and the coercive field was 45 kV. There was a slight asymmetry in the hysteresis for different polarities, which was thought to be due to the work function differences of different electrodes. The dielectric constant was about 452 and was found to exhibit low frequency dispersion that increased with frequency, This was related to the space-charge polarization. The complex impedance was plotted and this exhibited a semicircular trace, and indicated an equivalent parallel R - C circuit within the sample. This was attributed to the grain response. The DC leakage current-voltage plot was consistent with the space-charge limited conduction theory, but showed some deviation, which was explained by assuming a Poole-Frenkel type conduction to be superimposed on to the usual space-charge controlled current. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The reversible and irreversible components of the total polarization in a thin film of SrBi2(Ta-0.5,Nb-0.5)(2)O-9 were calculated. The C-V loop was integrated to obtain the reversible part of the total polarization. The reversible polarization was only 20% of the total polarization and showed almost no hysteresis. However, the dielectric constant due to the total polarization was almost the same as that for the reversible polarization in the saturation region of the large signal P-E hysteresis loop. The reversible part was subtracted from the total polarization to calculate the irreversible counterpart of it. The irreversible polarization showed a near-square shaped hysteresis loop, while the reversible polarization was obeying the Rayleigh law. The small signal hysteresis was simulated from the parameters obtained from the Rayleigh-curve fit with the experimental curve and then it was compared with the result obtained from direct measurement with small amplitude. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
9-Anthryl and 1-pyrenyl terpyridines (1 and 2, respectively), key precursors for the design of novel fluorescent sensors have been synthesized and characterized by H-1 NMR, mass spectroscopy and X-ray crystallography. Twisted molecular conformations for each 1 and 2 were observed in their single crystal structures. Energy minimization calculations for the 1 and 2 using the semi-empirical AM1 method show that the 'twisted' conformation is intrinsic to these systems. We observe interconnected networks of edge-to-face CH...pi interactions, which appear to be cooperative in nature, in each of the crystal structures. The two twisted molecules, although having differently shaped polyaromatic hydrocarbon substituents, show similar patterns of edge-to-face CH...pi interactions.The presently described systems comprise of two aromatic surfaces that are almost orthogonal to each other. This twisted or orthogonal nature of the molecules leads to the formation of interesting multi-directional ladder like supramolecular organizations. A combination of edge-to-face and face-to-face packing modes helps to stabilize these motifs. The ladder like architecture in 1 is helical in nature. (C) 2002 Published by Elsevier Science B.V.
Resumo:
The title compound, C(14)H(18)F(2)O(2)center dot 0.5H(2)O, a hemihydrate of a C(s)-symmetric unsaturated difluorodiol, crystallizes in the centrosymmetric space group P2/m (Z = 4). The asymmetric unit contains two crystallographically independent difluorodiol half-molecules, occupying the mirror planes at (x, 0, z) and (x, 1/2, z), and half a molecule of water, lying on the twofold axis at (0, y, 0). Four difluorodiol molecules self-assemble around each solvent water molecule via O-H center dot center dot center dot O hydrogen bonds in a near tetrahedral symmetry to generate a cylindrical column-like architecture.
Resumo:
This paper presents an overview of the seismic microzonation and the grade/level based study along with methods used for estimating hazard. The principles of seismic microzonation along with some current practices are discussed. Summary of seismic microzonation experiments carried out in India is presented. A detailed work of seismic microzonation of Bangalore has been presented as a case study. In this case study, a seismotectonic map for microzonation area has been developed covering 350 km radius around Bangalore, India using seismicity and seismotectonic parameters of the region. For seismic microzonation Bangalore Mahanagar Palike (BMP) area of 220 km2 has been selected as the study area. Seismic hazard analysis has been carried out using deterministic as well as probabilistic approaches. Synthetic ground motion at 653 locations, recurrence relation and peak ground acceleration maps at rock level have been generated. A detailed site characterization has been carried out using borehole with standard penetration test (SPT) ―N‖ values and geophysical data. The base map and 3-dimensional sub surface borehole model has been generated for study area using geographical information system (GIS). Multichannel analysis of surface wave (MASW)method has been used to generate one-dimensional shear wave velocity profile at 58 locations and two- dimensional profile at 20 locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 5m intervals up to a depth of 30m. Because of wider variation in the rock depth, equivalent shear for the soil overburden thickness alone has been estimated and mapped using ArcGIS 9.2. Based on equivalent shear wave velocity of soil overburden thickness, the study area is classified as ―site class D‖. Site response study has been carried out using geotechnical properties and synthetic ground motions with program SHAKE2000.The soil in the study area is classified as soil with moderate amplification potential. Site response results obtained using standard penetration test (SPT) ―N‖ values and shear wave velocity are compared, it is found that the results based on shear wave velocity is lower than the results based on SPT ―N‖ values. Further, predominant frequency of soil column has been estimated based on ambient noise survey measurements using instruments of L4-3D short period sensors equipped with Reftek 24 bit digital acquisition systems. Predominant frequency obtained from site response study is compared with ambient noise survey. In general, predominant frequencies in the study area vary from 3Hz to 12Hz. Due to flat terrain in the study area, the induced effect of land slide possibility is considered to be remote. However, induced effect of liquefaction hazard has been estimated and mapped. Finally, by integrating the above hazard parameters two hazard index maps have been developed using Analytic Hierarchy Process (AHP) on GIS platform. One map is based on deterministic hazard analysis and other map is based on probabilistic hazard analysis. Finally, a general guideline is proposed by bringing out the advantages and disadvantages of different approaches.
Resumo:
This paper presents an overview of the seismic microzonation and the grade/level based study along with methods used for estimating hazard. The principles of seismic microzonation along with some current practices are discussed. Summary of seismic microzonation experiments carried out in India is presented. A detailed work of seismic microzonation of Bangalore has been presented as a case study. In this case study, a seismotectonic map for microzonation area has been developed covering 350 km radius around Bangalore, India using seismicity and seismotectonic parameters of the region. For seismic microzonation Bangalore Mahanagar Palike (BMP) area of 220 km2 has been selected as the study area. Seismic hazard analysis has been carried out using deterministic as well as probabilistic approaches. Synthetic ground motion at 653 locations, recurrence relation and peak ground acceleration maps at rock level have been generated. A detailed site characterization has been carried out using borehole with standard penetration test (SPT) ―N‖ values and geophysical data. The base map and 3-dimensional sub surface borehole model has been generated for study area using geographical information system (GIS). Multichannel analysis of surface wave (MASW)method has been used to generate one-dimensional shear wave velocity profile at 58 locations and two- dimensional profile at 20 locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 5m intervals up to a depth of 30m. Because of wider variation in the rock depth, equivalent shear for the soil overburden thickness alone has been estimated and mapped using ArcGIS 9.2. Based on equivalent shear wave velocity of soil overburden thickness, the study area is classified as ―site class D‖. Site response study has been carried out using geotechnical properties and synthetic ground motions with program SHAKE2000.The soil in the study area is classified as soil with moderate amplification potential. Site response results obtained using standard penetration test (SPT) ―N‖ values and shear wave velocity are compared, it is found that the results based on shear wave velocity is lower than the results based on SPT ―N‖ values. Further, predominant frequency of soil column has been estimated based on ambient noise survey measurements using instruments of L4-3D short period sensors equipped with Reftek 24 bit digital acquisition systems. Predominant frequency obtained from site response study is compared with ambient noise survey. In general, predominant frequencies in the study area vary from 3Hz to 12Hz. Due to flat terrain in the study area, the induced effect of land slide possibility is considered to be remote. However, induced effect of liquefaction hazard has been estimated and mapped. Finally, by integrating the above hazard parameters two hazard index maps have been developed using Analytic Hierarchy Process (AHP) on GIS platform. One map is based on deterministic hazard analysis and other map is based on probabilistic hazard analysis. Finally, a general guideline is proposed by bringing out the advantages and disadvantages of different approaches.
Resumo:
Presented is a thermodynamic feasibility analysis of extracting base metal chlorides fiom low-grade,multimetallic oxide ores using CaClz as a chlorinating agent in the presence of SOz undoz. The oxides react to form corresponding chlorides, while CaClz is converted to CaS04. The Ellingham diagram is usedfor comparing the standard Gibbs' fiee energy chanlpef or the su(fation-chlorinationr eaction of a large number of oxides. Except for alumina, silica and chromia, most of the other metal oxides will be converted to their respective chlorides. The volatile chlorides can be condensed, and the chlorides present in the condensed state can be leached. A process is proposed that uses a nontoxic chlorinating agent and gives an eficient sepurutiort cftlte metallic vuluesfr.om the garlgue.