106 resultados para Generation of 1898
Resumo:
Ce0.67Cr0.33O2.11 was synthesized by hydrothermal method using diethylenetriamine as complexing agent (Chem. Mater. 2008, 20, 7268). Ce0.67Cr0.33O2.11 being the only compound likes UO2+delta to have excess oxygen, it releases a large proportion of its lattice oxygen (0.167 M [O]/mole of compound) at relatively low temperature (465 degrees C) directly and it has been utilized for generation of H-2 by thermo-splitting of water. An almost stoichiometric amount of H-2 (0.152 M/Mole of compound) is generated at much lower temperature (65 degrees C). There is an almost comparable amount of oxygen release and hydrogen generation over this material at very low temperature comparedto other CeO2-MOx (Mn, Fe, Cu, and Ni) mixed-oxide solid solutions (O-2 evolution >= 1300 degrees C and H-2 generation at 1000 degrees C). The reversible nature of oxygen release and intake of this material is attributed to its fluorite Structure and coupling between the Ce4+/Ce3+ and Cr4+/6+/Cr3+ redox couples. Compound shows reversible oxygen release and intake by H2O absorption and subsequent hydrogen release to gain parent structure and hence this material can be utilized for generation of H-2 at very low temperature by thermo-chemical splitting of water.
Resumo:
Combination of femtosecond Kerr, two photon absorption, and impulsive stimulated Raman scattering (ISRS) experiments have been carried out to investigate the effect of pulse energy and crystal temperature on the generation of coherent polaritons and phonons in 〈110〉 cut ZnTe single crystals of three different resistivities. We demonstrate that the effect of two photon induced free carriers on the creation of both the polaritons and phonons is largest at 4 K where the free carrier lifetime is enhanced. The temperature dependant ISRS on high and low purity ZnTe crystals allows us to unambiguously assign the phonon mode at 3.5 THz to the longitudinal acoustic mode at X-point in the Brillouin zone, LA(X).
Resumo:
We have studied the effect of dendrimer generation on the interaction between dsDNA and the PAMAM dendrimer using force biased simulation of dsDNA with three generations of dendrimer: G3, G4, and G5. Our results for the potential of mean force (PMF) and the dendrimer asphericity along the binding pathway, combined with visualization of the simulations, demonstrate that dendrimer generation has a pronounced impact on the interaction. The PMF increases linearly with increasing generation of the dendrimer. While, in agreement with previous results, we see an increase in the extent to which the dendrimer bends the dsDNA with increasing dendrimer generation, we also see that the deformation of the dendrimer is greater with smaller generation of the dendrimer. The larger dendrimer forces the dsDNA to conform to its structure, while the smaller dendrimer is forced to conform to the structure of the dsDNA. Monitoring the number of bound cations at different values of force bias distance shows the expected effect of ions being expelled when the dendrimer binds dsDNA.
Resumo:
The costimulatory receptors CD28 and cytotoxic T-lymphocyte antigen (CTLA)-4 and their ligands, CD80 and CD86, are expressed on T lymphocytes; however, their functional roles during T cell-T cell interactions are not well known. The consequences of blocking CTLA-4-CD80/CD86 interactions on purified mouse CD4(+) T cells were studied in the context of the strength of signal (SOS). CD4(+) T cells were activated with phorbol 12-myristate 13-acetate (PMA) and different concentrations of a Ca2+ ionophore, Ionomycin (I), or a sarcoplasmic Ca2+ ATPase inhibitor, Thapsigargin (TG). Increasing concentrations of I or TG increased the amount of interleukin (IL)-2, reflecting the conversion of a low to a high SOS. During activation with PMA and low amounts of I, intracellular concentrations of calcium ([Ca2+](i)) were greatly reduced upon CTLA-4-CD80/CD86 blockade. Further experiments demonstrated that CTLA-4-CD80/CD86 interactions reduced cell cycling upon activation with PMA and high amounts of I or TG (high SOS) but the opposite occurred with PMA and low amounts of I or TG (low SOS). These results were confirmed by surface T-cell receptor (TCR)-CD3 signalling using a low SOS, for example soluble anti-CD3, or a high SOS, for example plate-bound anti-CD3. Also, CTLA-4-CD80/CD86 interactions enhanced the generation of reactive oxygen species (ROS). Studies with catalase revealed that H2O2 was required for IL-2 production and cell cycle progression during activation with a low SOS. However, the high amounts of ROS produced during activation with a high SOS reduced cell cycle progression. Taken together, these results indicate that [Ca2+](i) and ROS play important roles in the modulation of T-cell responses by CTLA-4-CD80/CD86 interactions.
Resumo:
Among the human diseases that result from chromosomal aberrations, a de novo deletion in chromosome 11p13 is clinically associated with a syndrome characterized by Wilms' tumor, aniridia, genitourinary anomalies, and mental retardation (WAGR). Not all genes in the deleted region have been characterized biochemically or functionally. We have recently identified the first Class III cyclic nucleotide phosphodiesterase, Rv0805, from Mycobacterium tuberculosis, which biochemically and structurally belongs to the superfamily of metallophosphoesterases. We performed a large scale bioinformatic analysis to identify orthologs of the Rv0805 protein and identified many eukaryotic genes that included the human 239FB gene present in the region deleted in the WAGR syndrome. We report here the first detailed biochemical characterization of the rat 239FB protein and show that it possesses metallophosphodiesterase activity. Extensive mutational analysis identified residues that are involved in metal interaction at the binuclear metal center. Generation of a rat 239FB protein with a mutation corresponding to a single nucleotide polymorphism seen in human 239FB led to complete inactivation of the protein. A close ortholog of 239FB is found in adult tissues, and biochemical characterization of the 239AB protein demonstrated significant hydrolytic activity against 2',3'-cAMP, thus representing the first evidence for a Class III cyclic nucleotide phosphodiesterase in mammals. Highly conserved orthologs of the 239FB protein are found in Caenorhabditis elegans and Drosophila and, coupled with available evidence suggesting that 239FB is a tumor suppressor, indicate the important role this protein must play in diverse cellular events.
Resumo:
Silver nanoparticles are known to have bactericidal effects. A new generation of dressings incorporating antimicrobial agents like silver nanoparticles is being formulated to reduce or prevent infections. The particles can be incorporated in materials and cloth rendering them sterile. Recently, it was found that aqueous silver ions can be reduced by aqueous extract of plant parts to generate extremely stable silver nanoparticles in water. Apart from being environmentally friendly process, use of Neem leaves extract might add synergistic antibacterial effect of Neem leaves to the biosynthesized nanoparticles. With this hypothesis the biosynthetic production of silver nanoparticles by aqueous extract of Neem leaves and its bactericidal effect in cotton cloth against E. Coli were studied in this work. Silver nanoparticles were synthesized by short term (1 day) and long term (21 days) interaction of Neem extract (20% w/v) and 0.01 M AgNO3 solution in 1:4 mixing ratio. The synthesized particles were characterized by UV visible spectroscopy, transmission electron microscopy, and incorporated into cotton disks by (i) centrifuging the disks with liquid broth containing nanoparticles, (ii) in-situ coating process during synthesis, and (iii) coating with dried and purified nanoparticles. The antibacterial property of the nanoparticles coated cotton disks was studied by disk diffusion method. The effect of consecutive washing of the coated disks with distilled water on antibacterial property was also investigated. This work demonstrates the possible use of biologically synthesized silver nanoparticles by its incorporation in cloths leading them to sterilization.
Resumo:
Three aspects of crystal engineering in molecular crystals are presented to emphasize the role of intermolecular interactions and factors influencing crystal packing. Hydrogen bonded tartrate-amine complexes have been analyzed with the propensity for formation of multidirectional hydrogen bonding as a key design element in the generation of materials for second harmonic generation (SHG). The invariance of the framework in DBT and its possible implications on SHG is outlined. The role of Fluorine in orienting molecules of coumarins, styrylcoumarins and butadienes for photodimerization is described with particular emphasis on its steering capability. Usage of coumarin as an design element for the generation of polymorphs of substituted styrylcoumarins is examined with specific examples.
Resumo:
Ternary iron(III) complexes (FeL(B)] (1-3) of a trianionic tetradentate phenolate-based ligand (L) and henanthroline base (B), namely, 1,10-phenanthroline (phen, 1), dipyridoquinoxaline (dpq, 2), and dipyridophenazine (dppz, 3), have been prepared and structurally characterized and their DNA binding, cleavage, and photocytotoxic properties studied. The complexes with a FeN3O3 core show the Fe(III)/Fe(II) redox couple near -0.6 V in DMF, a magnetic moment value of similar to 5.9 mu(B), and a binding propensity to both calf thymus DNA and bovine serum albumin (BSA) protein. They exhibit red-light-induced DNA cleavage activity following a metal-assisted photoredox pathway forming HO center dot radicals but do not show any photocleavage of BSA in UV-A light. Complex 3 displays photocytotoxicity in the human cervical cancer cell line (HeLa) and human keratinocyte cell line (HaCaT) with respective IC50 values of 3.59 mu M and 6.07 mu M in visible light and 251 nM and 751 nM in UV-A light of 365 nm. No significant cytotoxicity is observed in the dark. The photoexposed HeLa cells, treated prior with complex 3, have shown marked changes in nuclear morphology as demonstrated by Hoechst 33258 nuclear stain. Generation of reactive oxygen species has been evidenced from the fluorescence enhancement of dichlorofluorescein upon treatment with 3 followed by photoexposure. Nuclear chromatin cleavage has been observed in acridine orange/ethidium bromide dual staining of treated HeLa cells and from alkaline single-cell gel electrophoresis. Caspase 3/7 activity in HeLa cells has been found to be upregulated by only 4 fold after photoirradiation, signifying the fact that cell death through a caspase 3/7 dependent pathway may not be solely operative.
Resumo:
We investigated the cytotoxic effects of nimbolide, a limonoid present in leaves and flowers of the neem tree (Azadirachta indica) on human choriocarcinoma (BeWo) cells. Treatment with nimbolide resulted in dose- and time-dependent inhibition of growth of BeWo cells with IC50 values of 2.01 and 1.19 μM for 7 and 24 h respectively, accompanied by downregulation of proliferating cell nuclear antigen. Examination of nuclear morphology revealed fragmentation and condensation indicating apoptosis. Increase in the generation of reactive oxygen species (ROS) that was reversed by addition of reduced glutathione suggested ROS involvement in the cytotoxicity of nimbolide. A decrease in Bcl-2/Bax ratio with increased expression of Apaf-1 and caspase-3, and cleavage of poly(ADP-ribose) polymerase provide compelling evidence that nimbolide-induced apoptosis is mediated by the mitochondrial pathway. The results of the present study suggest that nimbolide has immense potential in cancer prevention and therapy based on its antiproliferative and apoptosis inducing effects.
Resumo:
We investigated the cytotoxic effects of nimbolide, a limonoid present in leaves and flowers of the neem tree (Azadirachta indica) on human choriocarcinoma (BeWo) cells. Treatment with nimbolide resulted in dose- and time-dependent inhibition of growth of BeWo cells with IC50 values of 2.01 and 1.19 μM for 7 and 24 h respectively, accompanied by downregulation of proliferating cell nuclear antigen. Examination of nuclear morphology revealed fragmentation and condensation indicating apoptosis. Increase in the generation of reactive oxygen species (ROS) that was reversed by addition of reduced glutathione suggested ROS involvement in the cytotoxicity of nimbolide. A decrease in Bcl-2/Bax ratio with increased expression of Apaf-1 and caspase-3, and cleavage of poly(ADP-ribose) polymerase provide compelling evidence that nimbolide-induced apoptosis is mediated by the mitochondrial pathway. The results of the present study suggest that nimbolide has immense potential in cancer prevention and therapy based on its antiproliferative and apoptosis inducing effects.
Resumo:
The problem of optimal scheduling of the generation of a hydro-thermal power system that is faced with a shortage of energy is studied. The deterministic version of the problem is first analyzed, and the results are then extended to cases where the loads and the hydro inflows are random variables.
Resumo:
A fast iterative scheme based on the Newton method is described for finding the reciprocal of a finite segment p-adic numbers (Hensel code). The rate of generation of the reciprocal digits per step can be made quadratic or higher order by a proper choice of the starting value and the iterating function. The extension of this method to find the inverse transform of the Hensel code of a rational polynomial over a finite field is also indicated.
Resumo:
In a multifaceted immunity to mycobacterial infection, induced expression of cyclooxygenase-2 (COX-2) by Mycobacterium bovis bacillus Calmette-Guerin (BCG) may act as an important influencing factor for the effective host immunity. We here demonstrate that M. bovis BCG-triggered TLR2-dependent signaling leads to COX-2 and PGE2 expression in vitro in macrophages and in vivo in mice. Further, the presence of PGE2 could be demonstrated in sera or cerebrospinal fluid of tuberculosis patients. The induced COX-2 expression in macrophages is dependent on NF-kappa B activation, which is mediated by inducible NO synthase (iNOS)/NO-dependent participation of the members of Notch1-PI-3K signaling cascades as well as iNOS-independent activation of ERK1/2 and p38 MAPKs. Inhibition of iNOS activity abrogated the M. bovis BCG ability to trigger the generation of Notch1 intracellular domain (NICD), a marker for Notch1 signaling activation, as well as activation of the PI-3K signaling cascade. On the contrary, treatment of macrophages with 3-morpholinosydnonimine, a NO donor, resulted in a rapid increase in generation of NICD, activation of PI-3K pathway, as well as the expression of COX-2. Stable expression of NICD in RAW 264.7 macrophages resulted in augmented expression of COX-2. Further, signaling perturbations suggested the involvement of the cross-talk of Notch1 with members with the PI-3K signaling cascade. These results implicate the dichotomous nature of TLR2 signaling during M. bovis BCG-triggered expression of COX-2. In this perspective, we propose the involvement of iNOS/NO as one of the obligatory, early, proximal signaling events during M. bovis BCG-induced COX-2 expression in macrophages.
Resumo:
In this study, reduction and desorption of oxides of nitrogen (NOx) were conducted using an electrical discharge plasma technique. The study was carried out using a simulated gas mixture to explore the possibility of re-generation of used adsorbents by a nonthermal plasma desorption technique. Three different types of corona electrodes, namely, pipe, helical wire, and straight wire, were used for analyzing their effectiveness in NOx reduction/desorption. The pipe-type corona electrode exhibited a nitric oxide (NO) conversion of 50%, which is 1.5 times that of the straight-wire-type electrode at an energy density of 175J/L. The helical-wire-type corona electrode exhibited a NOx desorption efficiency almost 4 times that of the pipe-type electrode,indicating the possibility that corona-generated species play a crucial role in desorption.
Resumo:
Self-contained Non-Equilibrium Molecular Dynamics (NEMD) simulations using Lennard-Jones potentials were performed to identify the origin and mechanisms of atomic scale interfacial behavior between sliding metals. The mixing sequence and velocity profiles were compared via MD simulations for three cases, viz.: sell-mated, similar and hard-softvcrystal pairs. The results showed shear instability, atomic scale mixing, and generation of eddies at the sliding interface. Vorticity at the interface suggests that atomic flow during sliding is similar to fluid flow under Kelvin-Helmholtz instability and this is supported by velocity profiles from the simulations. The initial step-function velocity profile spreads during sliding. However the velocity profile does not change much at later stages of the simulation and it eventually stops spreading. The steady state friction coefficient during simulation was monitored as a function of sliding velocity. Frictional behavior can be explained on the basis of plastic deformation and adiabatic effects. The mixing layer growth kinetics was also investigated.