146 resultados para Functions, Abelian
Resumo:
We give an explicit, direct, and fairly elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses only some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory; therefore it would form useful supplementary reading for a graduate course on quantum mechanics.
Resumo:
The activation of functional responses in rabbit peritoneal neutrophils by gramicidin and the chemotactic peptide, N-formyl-methionyl-leucyl-phenylalanine methyl ester, was studied. Gramicidin activated superoxide generation, lysosomal enzyme release and a decrease in fluorescence of chlortetracycline-loaded cells, as for the chemotactic peptide. The maximum intensities of the responses by gramicidin were lower than that by chemotactic peptide. Responses by both these peptides could be inhibited by t-butyloxycarbonyl-methionyl-leucyl-phenylalanine, a chemotactic peptide receptor antagonist. Gramicidin gave responses at low doses comparable to that of the chemotactic peptide.
Resumo:
We report results from a first principles calculation of spatially dependent correlation functions around a magnetic impurity in metals described by the nondegenerate Anderson model. Our computations are based on a combination of perturbative scaling theory and numerical renormalization group methods. Results for the conduction election charge density around the impurity and correlation functions involving the conduction electron and impurity charge and spin densities will be presented. The behavior in various regimes including the mixed valent regime will be explored.
Resumo:
In this study we present approximate analytical expressions for estimating the variation in multipole expansion coefficients as a function of the size of the apertures in the electrodes in axially symmetric (3D) and two-dimensional (2D) ion trap ion traps. Following the approach adopted in our earlier studies which focused on the role of apertures to fields within the traps, here too, the analytical expression we develop is a sum of two terms, A(n,noAperiure), the multipole expansion coefficient for a trap with no apertures and A(n,dueToAperture), the multipole expansion coefficient contributed by the aperture. A(n,noAperture) has been obtained numerically and A(n,dueToAperture) is obtained from the n th derivative of the potential within the trap. The expressions derived have been tested on two 3D geometries and two 2D geometries. These include the quadrupole ion trap (QIT) and the cylindrical ion trap (CIT) for 3D geometries and the linear ion trap (LIT) and the rectilinear ion trap (RIT) for the 2D geometries. Multipole expansion coefficients A(2) to A(12), estimated by our analytical expressions, were compared with the values obtained numerically (using the boundary element method) for aperture sizes varying up to 50% of the trap dimension. In all the plots presented, it is observed that our analytical expression for the variation of multipole expansion coefficients versus aperture size closely follows the trend of the numerical evaluations for the range of aperture sizes considered. The maximum relative percentage errors, which provide an estimate of the deviation of our values from those obtained numerically for each multipole expansion coefficient, are seen to be largely in the range of 10-15%. The leading multipole expansion coefficient, A(2), however, is seen to be estimated very well by our expressions, with most values being within 1% of the numerically determined values, with larger deviations seen for the QIT and the LIT for large aperture sizes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
An algebraic generalization of the well-known binary q-function array to a multivalued q-function array is presented. It is possible to associate tree-structure realizations for binary q-functions and multivalued q-functions. Synthesis of multivalued functions using this array is very simple
Resumo:
Energy-based direct methods for transient stability analysis are potentially useful both as offline tools for planning purposes as well as for online security assessment. In this paper, a novel structure-preserving energy function (SPEF) is developed using the philosophy of structure-preserving model for the system and detailed generator model including flux decay, transient saliency, automatic voltage regulator (AVR), exciter and damper winding. A simpler and yet general expression for the SPEF is also derived which can simplify the computation of the energy function. The system equations and the energy function are derived using the centre-of-inertia (COI) formulation and the system loads are modelled as arbitrary functions of the respective bus voltages. Application of the proposed SPEF to transient stability evaluation of power systems is illustrated with numerical examples.
Resumo:
An application of direct methods to dynamic security assessment of power systems using structure-preserving energy functions (SPEF) is presented. The transient energy margin (TEM) is used as an index for checking the stability of the system as well as ranking the contigencies based on their severity. The computation of the TEM requires the evaluation of the critical energy and the energy at fault clearing. Usually this is done by simulating the faulted trajectory, which is time-consuming. In this paper, a new algorithm which eliminates the faulted trajectory estimation is presented to calculate the TEM. The system equations and the SPEF are developed using the centre-of-inertia (COI) formulation and the loads are modelled as arbitrary functions of the respective bus voltages. The critical energy is evaluated using the potential energy boundary surface (PEBS) method. The method is illustrated by considering two realistic power system examples.
Resumo:
We consider the Fekete-Szego problem with real parameter lambda for the class Co(alpha) of concave univalent functions. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The torsional potential functions Vt(phi) and Vt(psi) around single bonds N--C alpha and C alpha--C, which can be used in conformational studies of oligopeptides, polypeptides and proteins, have been derived, using crystal structure data of 22 globular proteins, fitting the observed distribution in the (phi, psi)-plane with the value of Vtot(phi, psi), using the Boltzmann distribution. The averaged torsional potential functions, obtained from various amino acid residues in L-configuration, are Vt(phi) = 1.0 cos (phi + 60 degrees); Vt(psi) = 0.5 cos (psi + 60 degrees) - 1.0 cos (2 psi + 30 degrees) - 0.5 cos (3 psi + 30 degrees). The dipeptide energy maps Vtot(phi, psi) obtained using these functions, instead of the normally accepted torsional functions, were found to explain various observations, such as the absence of the left-handed alpha helix and the C7 conformation, and the relatively high density of points near the line psi = 0 degrees. These functions derived from observational data on protein structures, will, it is hoped, explain various previously unexplained facts in polypeptide conformation.
Resumo:
A technique based on empirical orthogonal functions is used to estimate hydrologic time-series variables at ungaged locations. The technique is applied to estimate daily and monthly rainfall, temperature and runoff values. The accuracy of the method is tested by application to locations where data are available. The second-order characteristics of the estimated data are compared with those of the observed data. The results indicate that the method is quick and accurate.
Resumo:
We calculate the string tension and 0++ and 2++ glueball masses in pure gauge QCD using an improved lattice action. We compare various smearing methods, and find that the best glueball signal is obtained using smeared Wilson loops of a size of about 0.5 fm. Our results for mass ratios m0++/√σ=3.5(3) and m2++/m0++=1.6(2) are consistent with those computed with the simple plaquette action.
Resumo:
A systematic structure analysis of the correlation functions of statistical quantum optics is carried out. From a suitably defined auxiliary two‐point function we are able to identify the excited modes in the wave field. The relative simplicity of the higher order correlation functions emerge as a byproduct and the conditions under which these are made pure are derived. These results depend in a crucial manner on the notion of coherence indices and of unimodular coherence indices. A new class of approximate expressions for the density operator of a statistical wave field is worked out based on discrete characteristic sets. These are even more economical than the diagonal coherent state representations. An appreciation of the subtleties of quantum theory obtains. Certain implications for the physics of light beams are cited.
Resumo:
The torsional potential functions Vt(φ) and Vt(ψ) around single bonds N–Cα and Cα-C, which can be used in conformational studies of oligopeptides, polypeptides and proteins, have been derived, using crystal structure data of 22 globular proteins, fitting the observed distribution in the (φ, ψ)-plane with the value of Vtot(φ, ψ), using the Boltzmann distribution. The averaged torsional potential functions, obtained from various amino acid residues in l-configuration, are Vt(φ) = – 1.0 cos (φ + 60°); Vt(ψ) = – 0.5 cos (ψ + 60°) – 1.0 cos (2ψ + 30°) – 0.5 cos (3ψ + 30°). The dipeptide energy maps Vtot(φ, ψ) obtained using these functions, instead of the normally accepted torsional functions, were found to explain various observations, such as the absence of the left-handed alpha helix and the C7 conformation, and the relatively high density of points near the line ψ = 0°. These functions, derived from observational data on protein structures, will, it is hoped, explain various previously unexplained facts in polypeptide conformation.
Resumo:
Consider L independent and identically distributed exponential random variables (r.vs) X-1, X-2 ,..., X-L and positive scalars b(1), b(2) ,..., b(L). In this letter, we present the probability density function (pdf), cumulative distribution function and the Laplace transform of the pdf of the composite r.v Z = (Sigma(L)(j=1) X-j)(2) / (Sigma(L)(j=1) b(j)X(j)). We show that the r.v Z appears in various communication systems such as i) maximal ratio combining of signals received over multiple channels with mismatched noise variances, ii)M-ary phase-shift keying with spatial diversity and imperfect channel estimation, and iii) coded multi-carrier code-division multiple access reception affected by an unknown narrow-band interference, and the statistics of the r.v Z derived here enable us to carry out the performance analysis of such systems in closed-form.