141 resultados para Functional Impuslivity
Resumo:
The study of molecular machines, and protein complexes in general, is a growth area of biology. Is there a computational method for inferring which combinations of proteins in an organism are likely to form a crystallizable complex? We use the Protein Data Bank (PDB) to assess the usefulness of inferred functional protein linkages for this task. We find that of 242 nonredundant prokaryotic protein complexes (complexes excluding structural variants of the same protein) from organisms that are shared between the current PDB and the Prolinks functional linkage database, 44% (107/242) contain proteins that are linked at high-confidence by one or more methods of computed functional linkages. This suggests that computing functional linkages will be useful in defining protein complexes for structural studies. We offer a database of such inferred linkages corresponding to likely protein complexes for some 629,952 pairs of proteins in 154 prokaryotes and archea.
Resumo:
Human platelet-derived growth factor (PDGF) is composed of two polypeptide chains, PDGF-1 and PDGF-2,the human homolog of the v-sis oncogene. Deregulation of PDGF-2 expression can confer a growth advantage to cells possessing the cognate receptor and, thus, may contribute to the malignant phenotype. We investigated the regulation of PDGF-2 mRNA expression during megakaryocytic differentiation of K562 cells. Induction by 12-O-tetradecanoylphorbol-13-acetate (TPA) led to a greater than 200-fold increase in PDGF-2 transcript levels in these cells. Induction was dependent on protein synthesis and was not enhanced by cycloheximide exposure.In our initial investigation of the PDGF-2 promoter, a minimal promoter region, which included sequences extending only 42 base pairs upstream of the TATA signal, was found to be as efficient as 4 kilobase pairs upstream of the TATA signal in driving expression of a reporter gene in uninduced K562 cells. We also functionally identified different regulatory sequence elements of the PDGF-2 promoter in TPA-induced K562 cells. One region acted as a transcriptional silencer, while another region was necessary for maximal activity of the promoter in megakaryoblasts. This region was shown to bind nuclear factors and was the target for trans-activation in normal and tumor cells. In one tumor cell line, which expressed high PDGF-2 mRNA levels, the presence of the positive regulatory region resulted in a 30-fold increase in promoter activity. However, the ability of the minimal PDGF-2 promoter to drive reporter gene expression in uninduced K562 cells and normal fibroblasts, which contained no detectable PDGF-2 transcripts, implies the existence of other negative control mechanisms beyond the regulation of promoter activity.
Resumo:
The in situ cryo-crystallization study of benzyl derivatives reveals that the molecular packing in these compounds is either through methylene (sp(3)) C-H center dot center dot center dot pi or aromatic (sp(2)) C-H center dot center dot center dot pi interactions depending on the level of acidity of the benzyl proton. These studies of low melting compounds bring out the subtle features of such weak interactions and point to the directional preferences depending on the nature (electron withdrawing, polarizability) of the neighbouring functional group.
Resumo:
We present a general method for the synthesis of functional nanoporous structures by heat treating a loose compact of nanorods. Partial sintering of such a compact leads to spherodization of the nanorods and their fusion at the contact regions leading to an interconnected porous microstructure. The pore diameter can be controlled by changing the original nanorod diameter. We illustrate the generality of the method using TiO2, ZnO and hydroxyapatite as model systems; the method is applicable for any material that can be grown in the form of nanorods. The kinetics of the sintering process can be significantly enhanced in systems in which additional driving forces for mass transport arise from phase transitions proving an ultrafast pathway for producing biphasic porous structures. The possibility of producing hierarchical porous structures using fugitive sintering aids makes this process ideal for a variety of applications including catalysis, photoanodes for solar cells and scaffolds for biomedical applications.
Resumo:
SHMT (serine hydoxymethyltransferase), a type I pyridoxal 5'-phosphate-dependent enzyme, catalyses the conversion of L-serine and THF (tetrahydrofolate) into glycine and 5,10 -methylene THE SHMT also catalyses several THF-independent side reactions such as cleavage of P-hydroxy amino acids, trans-amination, racemization and decarboxylation. In the present study, the residues Asn(341), Tyr(60) and Phe(351), which are likely to influence THF binding, were mutated to alanine, alanine and glycine respectively, to elucidate the role of these residues in THF-dependent and -independent reactions catalysed by SHMT. The N341A and Y60A bsSHMT (Bacillus stearothermophilus SHMT) mutants were inactive for the THF-dependent activity, while the mutations had no effect on THF-independent activity. However, mutation of Phe(351) to glycine did not have any effect oil either of the activities. The crystal structures of the glycine binary complexes of the mutants showed that N341A bsSHMT forms an external aldimine as in bsSHMT, whereas Y60A and F351G bsSHMTs exist as a Mixture of internal/external aldimine and gem-diamine forms. Crystal structures of all of the three Mutants obtained in the presence of L-allo-threonine were similar to the respective glycine binary complexes. The structure of the ternary complex of F351G bsSHMT with glycine and FTHF (5-formyl THF) showed that the monoglutamate side chain of FTHF is ordered in both the subunits of the asymmetric unit, unlike in the wild-type bsSHMT. The present studies demonstrate that the residues Asn(341) and Tyr(60) are pivotal for the binding of THF/FTHF, whereas Phe(351) is responsible for the asymmetric binding of FTHF in the two subunits of the dimer.
Resumo:
Oxidative stress is caused by an imbalance between the production of reactive oxygen species (ROS) and the biological system's ability to detoxify these reactive intermediates. Mammalian cells have elaborate antioxidant defense mechanisms to control the damaging effects of ROS. Glutathione peroxidase (GPx), a selenoenzyme, plays a key role in protecting the organism from oxidative damage by catalyzing the reduction of harmful hydroperoxides with thiol a ``catalytic triad'' with tryptophan and glutamine, which cofactors. The selenocysteine residue at the active site forms activates the selenium moiety for an efficient reduction of peroxides. After the discovery that ebselen, a synthetic organoselenium compound, mimics the catalytic activity of GPx both in vitro and in vivo, several research groups developed a number of small-molecule selenium compounds as functional mimics of GPx, either by modifying the basic structure of ebselen or by incorporating some structural features of the native enzyme. The synthetic mimics reported in the literature can be classified in three major categories: (i) cyclic selenenyl amides having a Se-N bond, (ii) diaryl diselenides, and (iii) aromatic or aliphatic monoselenides. Recent studies show that ebselen exhibits very poor GPx activity when aryl or benzylic thiols such as PhSH or BnSH are used as cosubstrates. Because the catalytic activity of each GPx mimic largely depends on the thiol cosubstrates used, the difference in the thiols causes the discrepancies observed in different studies. In this Account, we demonstrate the effect of amide and amine substituents on the GPx activity of various organoselenium compounds. The existence of strong Se ... O/N interactions in the selenenyl sulfide intermediates significantly reduces the GPx activity. These interactions facilitate an attack of thiol at selenium rather than at sulfur, leading to thiol exchange reactions that hamper the formation of catalytically active selenol. Therefore, any substituent capable of enhancing the nucleophilic attack of thiol at sulfur in the selenenyl sulfide state would enhance the antioxidant potency of organoselenium compounds. Interestingly, replacement of the sec-amide substituent by a tert-amide group leads to a weakening of Se ... 0 interactions in the selenenyl sulfide intermediates. This modification results in 10- to 20-fold enhancements in the catalytic activities. Another strategy involving the replacement of tert-amide moieties by tert-amino substituents further increases the activity by 3- to 4-fold. The most effective modification so far in benzylamine-based GPx mimics appears to be either the replacement of a tert-amino substituent by a sec-amino group or the introduction of an additional 6-methoxy group in the phenyl ring. These strategies can contribute to a remarkable enhancement in the GPx activity. In addition to enhancing catalytic activity, a change in the substituents near the selenium moiety alters the catalytic mechanisms. The mechanistic investigations of functional mimics are useful not only for understanding the complex chemistry at the active site of GPx but also for designing and synthesizing novel antioxidants and anti-inflammatory agents.
Resumo:
This paper introduces CSP-like communication mechanisms into Backus’ Functional Programming (FP) systems extended by nondeterministic constructs. Several new functionals are used to describe nondeterminism and communication in programs. The functionals union and restriction are introduced into FP systems to develop a simple algebra of programs with nondeterminism. The behaviour of other functionals proposed in this paper are characterized by the properties of union and restriction. The axiomatic semantics of communication constructs are presented. Examples show that it is possible to reason about a communicating program by first transforming it into a non-communicating program by using the axioms of communication, and then reasoning about the resulting non-communicating version of the program. It is also shown that communicating programs can be developed from non-communicating programs given as specifications by using a transformational approach.
Resumo:
An endocellulase (1→4)-β-d-glucan 4-glucanohydrolase was isolated from the culture filtrates of Chaetomium thermophile. The enzyme was homogeneous by PAGE and SDS-PAGE. The molecular weight was 36 000 by SDS-PAGE and 38 000 by gel filtration. It was a glycoprotein. From the amino acid composition, it was found to be rich in glycine, threonine, and aspartic and glutamic acids, but contained only low proportions of histidine and sulfur-containing amino acids. It was optimally active at pH 6 and at 60°. The enzyme did not hydrolyze cellobiose and cellotriose, but hydrolyzed cello-tetraose, -pentaose, and -hexaose at comparable rates. It was specific for molecules containing β-(1→4) linkages. It showed high activity towards amorphous cellulose, and the reaction products contained cellobiose to cellopentaose, showing that it effects random cleavage of cellulose.
Resumo:
The aim of the present study was to examine the effect of hemiorchidectomy (HO) on serum FSH, LH, testosterone (T), and inhibin (INH) concentrations as well as on the testicular volume (TV) and on changes in the kinetics of germ cell turnovers in the remaining testis of adult male bonnet monkeys. Blood samples collected at 2200 h at various times before and after HO and testicular biopsies obtained at different periods were subjected to hormone analysis and DNA flow cytometry. Though serum T levels were lowered (p < 0.05) at 12 h after HO, T levels rapidly returned to intact control concentrations by Day 5. While serum LH remained unaltered, serum FSH increased markedly within 2 days of HO and remained significantly (p < 0.05) elevated over the next 90 days. Though serum INH showed a significant decrease (p < 0.05) by 15 min of HO, it returned to approximately 80% of intact levels within one week. The TV of the remaining testis showed maximal increment by Day 30 (p < 0.05) of HO. DNA flow cytometric analysis 24 days after HO showed increases (p < 0.05) in spermatogonia (2C) and primary spermatocytes (4C). These cell types by Day 45 had transformed to round (1C) and elongate (HC) (by 38%, p < 0.001) spermatids. Overall spermatogenesis (conversion of 2C to 1C and HC) showed significant enhancement at Days 110 and 175, suggesting that the spurt in spermatogenic activity is not confined to a single spermatogenic cycle.
Functional Analysis of an Acid Adaptive DNA Adenine Methyltransferase from Helicobacter pylori 26695
Resumo:
HP0593 DNA-(N-6-adenine)-methyltransferase (HP0593 MTase) is a member of a Type III restriction-modification system in Helicobacter pylori strain 26695. HP0593 MTase has been cloned, overexpressed and purified heterologously in Escherichia coli. The recognition sequence of the purified MTase was determined as 5'-GCAG-3' and the site of methylation was found to be adenine. The activity of HP0593 MTase was found to be optimal at pH 5.5. This is a unique property in context of natural adaptation of H. pylori in its acidic niche. Dot-blot assay using antibodies that react specifically with DNA containing m6A modification confirmed that HP0593 MTase is an adenine-specific MTase. HP0593 MTase occurred as both monomer and dimer in solution as determined by gel-filtration chromatography and chemical-crosslinking studies. The nonlinear dependence of methylation activity on enzyme concentration indicated that more than one molecule of enzyme was required for its activity. Analysis of initial velocity with AdoMet as a substrate showed that two molecules of AdoMet bind to HP0593 MTase, which is the first example in case of Type III MTases. Interestingly, metal ion cofactors such as Co2+, Mn2+, and also Mg2+ stimulated the HP0593 MTase activity. Preincubation and isotope partitioning analyses clearly indicated that HP0593 MTase-DNA complex is catalytically competent, and suggested that DNA binds to the MTase first followed by AdoMet. HP0593 MTase shows a distributive mechanism of methylation on DNA having more than one recognition site. Considering the occurrence of GCAG sequence in the potential promoter regions of physiologically important genes in H. pylori, our results provide impetus for exploring the role of this DNA MTase in the cellular processes of H. pylori.
Resumo:
One of the fundamental questions concerning homologous recombination is how RecA or its homologues recognize several DNA sequences with high affinity and catalyze all the diverse biological activities. In this study, we show that the extent of single-stranded DNA binding and strand exchange (SE) promoted by mycobacterial RecA proteins with DNA substrates having various degrees of GC content was comparable with that observed for Escherichia coli RecA. However, the rate and extent of SE promoted by these recombinases showed a strong negative correlation with increasing amounts of sequence divergence embedded at random across the length of the donor strand. Conversely, a positive correlation was seen between SE efficiency and the degree of sequence divergence in the recipient duplex DNA. The extent of heteroduplex formation was not significantly affected when both the pairing partners contained various degrees of sequence divergence, although there was a moderate decrease in the case of mycobacterial RecA proteins with substrates containing larger amounts of sequence divergence. Whereas a high GC content had no discernible effect on E. coli RecA coprotease activity, a negative correlation was apparent between mycobacterial RecA proteins and GC content. We further show clear differences in the extent of SE promoted by E. coli and mycobacterial RecA proteins in the presence of a wide range of ATP:ADP ratios. Taken together, our findings disclose the existence of functional diversity among E. coli and mycobacterial RecA nucleoprotein filaments, and the milieu of sequence divergence (i.e., in the donor or recipient) exerts differential effects on heteroduplex formation, which has implications for the emergence of new genetic variants.