60 resultados para Fuel cells.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anodized nanotubular and nanoporous zirconia membranes are of interest for applications involving elevated temperatures in excess of 400 degrees C, such as templates for the synthesis of nanostructures, catalyst supports, fuel cells and sensors. Thermal stability is thus an important attribute. The study described in this paper shows that the as-anodized nanoporous membranes can withstand more adverse temperature-time combinations than nanotubular membranes. Chemical treatment of the nanoporous membranes was found to further enhance their thermal stability. The net result is an enhancement in the limiting temperature from 500 degrees C for nanotubular membranes to 1000 degrees C for the chemically treated nanoporous membranes. The reasons for membrane degradation on thermal exposure and the mechanism responsible for retarding the same are discussed within the framework of the theory of thermal grooving.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrical conductivity and Seebeck coefficient of calcium-doped YFeO3, a potential cathode material in solid oxide fuel cells (SOFC), are measured as function of temperature and composition in air to resolve conflicts in the literature both on the nature of conduction (n- or p-type) and the types of defects (majority and the minority) present. Compositions of Y1-xCaxFeO3-delta with x = 0.0, 0.025, 0.05 and 0.1 are studied in the temperature range from 625 to 1250 K. All Y1-xCaxFeO3-delta samples show p-type semiconducting behaviour. Addition of Ca up to 5% dramatically increases the conductivity of YFeO3; increase is more gradual up to 10%. A second phase Ca2Fe2O5 appears in the microstructure for Ca concentrations in excess of 11%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As Polymer Electrolyte Fuel Cells (PEFCs) are nearing the acceptable performance level for automotive and stationary applications, the focus on the research is shifting more and more toward enhancing their durability that still remains a major concern in their commercial acceptability. Hydrous ruthenium oxide (RuO2) is a promising material for pseudocapacitors due to its high stability, high specific-capacitance and rapid faradaic-reaction. Incorporation of carbon-supported RuO2 (RuO2/C) to platinum (Pt) is found to ameliorate both stability and catalytic activity of fuel cell cathodes that exhibit higher performance and durability in relation to Pt/C cathodes as evidenced by cell polarization, impedance and cyclic voltammetry data. The degradation in performance of Pt-RuO2/C cathodes is found to be only similar to 8% after 10000 accelerated stress test (AST) cycles as against similar to 60% for Pt/C cathodes after 7000 AST cycles under similar conditions. These data are in conformity with the Electrochemical Surface Area and impedance results. Interestingly, Pt-RuO2/C cathodes can withstand more than 10000 AST cycles with only a nominal loss in their performance. Studies on catalytic electrodes with X-ray diffraction, transmission electron microscopy and cross-sectional field-emission scanning electron microscopy reflect that incorporation of RuO2 to Pt helps mitigating aggregation of Pt particles and improves its stability during long-term operation of PEFCs. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.jes113440] All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proton-conducting materials are an important component of fuel cells. Development of new types of proton-conducting materials is one of the most important issues in fuel-cell technology. Herein, we present newly developed proton-conducting materials, modularly built porous solids, including coordination polymers (CPs) or metalorganic frameworks (MOFs). The designable and tunable nature of the porous materials allows for fast development in this research field. Design and synthesis of the new types of proton-conducting materials and their unique proton-conduction properties are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanodendritic Pd is electrodeposited on poly(3,4-ethylenedioxythiophene) (PEDOT) coated carbon paper electrode. Electrodeposited Pd is non-dendritic in the absence of PEDOT. The electrooxidation of C-3-aliphatic alcohols, namely, propanol (PA), 1,2- propanediol (1, 2-PD), 1, 3-propanediol (1, 3-PD), and glycerol (GL) is studied in 1.0 M NaOH. The catalytic activity of nanodendritic Pd is greater than that of non-dendritic Pd for oxidation of the four alcohols molecules. Among those molecules the oxidation rate increases as: PA< 1, 2-PD < 1, 3-PD < GL. The cyclic voltammetric oxidation current peak appearing in the reverse direction of the sweep is greatly influenced by the nature of alcohol. The reduction of oxide film on Pd surface is attributed to affect the magnitude of backward peak current density. The amperometry and repeated cyclic voltammetry data suggest a high stability of nanodendritic Pd in alkaline medium. Glycerol is expected to be an appropriate alcohol for application as a fuel in alkaline fuel cells at nanodendritic electrodeposited Pd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Porous titanium oxide-carbon hybrid nanostructure (TiO2-C) with a specific surface area of 350 m(2)/g and an average pore-radius of 21 center dot 8 is synthesized via supramolecular self-assembly with an in situ crystallization process. Subsequently, TiO2-C supported Pt-Ru electro-catalyst (Pt-Ru/TiO2-C) is obtained and investigated as an anode catalyst for direct methanol fuel cells (DMFCs). X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM) have been employed to evaluate the crystalline nature and the structural properties of TiO2-C. TEM images reveal uniform distribution of Pt-Ru nanoparticles (d (Pt -aEuro parts per thousand Ru) = 1 center dot 5-3 center dot 5 nm) on TiO2-C. Methanol oxidation and accelerated durability studies on Pt-Ru/TiO2-C exhibit enhanced catalytic activity and durability compared to carbon-supported Pt-Ru. DMFC employing Pt-Ru/TiO2-C as an anode catalyst delivers a peak-power density of 91 mW/cm(2) at 65 A degrees C as compared to the peak-power density of 60 mW/cm(2) obtained for the DMFC with carbon-supported Pt-Ru anode catalyst operating under similar conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two Pd-6 molecular aggregates (1 and 2), self-sorted via a template-free three-component self-assembly process, represent new examples of discrete architectures exhibiting very high proton conductivity 0.78 x 10(-3) S cm(-1) (1) and 0.22 X 10(-3) S cm(-1) (2)] at 300 K at low relative humidity (B46%) with low activation energy comparable to that of currently used Nafion in fuel cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of Sr doping in CeO2 for its use as solid electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFCs) has been explored here. Ce1-xSrxO2-delta (x = 0.05-0.2) are successfully synthesized by citrate-complexation method. XRD, Raman, FT-IR, FE-SEM/EDX and electrochemical impedance spectra are used for structural and electrical characterizations. The formation of well crystalline cubic fluorite structured solid solution is observed for x = 0.05 based on XRD and Raman spectra. For compositions i.e., x > 0.05, however, a secondary phase of SrCeO3 is confirmed by the peak at 342 cm(-1) in Raman spectra. Although the oxygen ion conductivity was found to decrease with increase in x, based on ac-impedance studies, conductivity of Ce0.95Sr0.05O2-delta was found to be higher than of Ce0.95Gd0.1O2-delta and Ce0.8Gd0.2O2-delta. The decrease in conductivity of Ce1-xSrxO2-delta with increasing dopant concentration is ascribed to formation of impurity phase SrCeO3 as well as the formation of neutral associated pairs, Se `' Ce V-o. The activation energies are found to be 0.77, 0.83, 0.85 and 0.90 eV for x = 0.05, 0.1, 0.15 and 0.20, respectively. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate an electrochemical technique for the large scale synthesis of high quality few layer graphene sheets (FLGS) directly from graphite using oxalic acid (a weak acid) as the electrolyte. One of the interesting observations is that the FLGS are stable at least up to 800 degrees C and hence have potential application in solid oxide fuel cells as a gas diffusion layer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Manipulation of matter at the nanoscale is a way forward to move beyond our current choices in electrochemical energy storage and conversion technologies with promise of higher efficiency, environmental benignity, and cost-effectiveness. Electrochemical processes being basically surface phenomena, tailored multifunctional nanoarchitecturing can lead to improvements in terms of electronic and ionic conductivities, diffusion and mass transport, and electron transfer and electrocatalysis. The nanoscale is also a domain in which queer properties surface: those associated with conversion electrodes, ceramic particles enhancing the conductivity of polymer electrolytes, and transition metal oxide powders catalyzing fuel cell reactions, to cite a few. Although this review attempts to present a bird's eye view of the vast literature that has accumulated in this rather infant field, it also lists a few representative studies that establish the beneficial effects of going `nano'. Investigations on nanostructuring and use of nanoparticles and nanoarchitectures related to lithium-ion batteries (active materials and electrolytes), supercapacitors (electrical double-layer capacitors, supercapacitors based on pseudo-capacitance, and hybrid supercapacitors), and fuel cells (electrocatalysts, membranes and hydrogen storage materials) are highlighted. (C) 2012 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A dilution cum purge ejector for application in fuel cells represents a domain of ejector operation involving low entrainment ratio with differing secondary and primary gas; which is hardly investigated and a cohesive design framework is not readily available. We comprehensively study a constant area ejector using analytical, experimental and numerical tools at low entrainment ratio (0.004-0.065) with Air, Helium and Argon as secondary gas while the primary gas is Air. For the first time, limits of operating parameters used in control volume method to design the ejector are found to be highly dependent on the secondary molecular weight. The entrainment ratio in the ejector (low for Helium and high for Argon) is affected by the molecular weight and the static pressure within the ejector (low for Air and high for Argon & Helium) by the gamma of the secondary gas. Sufficient suction pressure (0.3-0.55 bar) is generated by the ejector thereby preventing any backflow of secondary gas at all primary stagnation pressures (1.5, 2.2 and 3.1 bar). Numerical results agree well with experimental results. The ejector is shown to completely dilute and purge the secondary flow, meeting all key design requirements. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inverters with high voltage conversion ratio are used in systems with sources such as batteries, photovoltaic (PV) modules or fuel cells. Transformers are often used in such inverters to provide the required voltage conversion ratio and isolation. In this paper, a compact high-frequency (HF) transformer interfaced AC link inverter with lossless snubber is discussed. A high performance synchronized modulation scheme is proposed for this inverter. This modulation addresses the issue of over-voltage spikes due to transformer leakage inductance and it is shown that the circuit can operate safely even when the turn-on delay, such as dead-time, is not used in the HF rectifier section. The problem of spurious turn-on in the HF inverter switches is also mitigated by the proposed modulation method. The circuit performance is validated experimentally with a $900W$ prototype inverter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Formic acid, the simplest carboxylic acid, is found in nature or can be easily synthesized in the laboratory (major by-product of some second generation biorefinery processes); it is also an important chemical due to its myriad applications in pharmaceuticals and industry. In recent years, formic acid has been used as an important fuel either without reformation (in direct formic acid fuel cells, DFAFCs) or with reformation (as a potential chemical hydrogen storage material). Owing to the better efficiency of DFAFCs compared to several other PEMFCs and reversible hydrogen storage systems, formic acid could serve as one of the better fuels for portable devices, vehicles and other energy-related applications in the future. This perspective is focused on recent developments in the use of formic acid as a reversible source for hydrogen storage. Recent developments in this direction will likely give access to a variety of low-cost and highly efficient rechargeable hydrogen fuel cells within the next few years by the use of suitable homogeneous metal complex/heterogeneous metal nanoparticle-based catalysts under ambient reaction conditions. The production of formic acid from atmospheric CO2 (a greenhouse gas) will decrease the CO2 content and may be helpful in reducing global warming.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Pt-transition metal (TM) alloy catalysts, the electron transfer from the TM to Pt is retarded owing to the inevitable oxidation of the TM surface by oxygen. In addition, acidic electrolytes such as those employed in fuel cells accelerate the dissolution of the surface TM oxide, which leads to catalyst degradation. Herein, we propose a novel synthesis strategy that selectively modifies the electronic structure of surface Co atoms with N-containing polymers, resulting in highly active and durable PtCo nanoparticle catalysts useful for the oxygen reduction reaction (ORR). The polymer, which is functionalized on carbon black, selectively interacts with the Co precursor, resulting in Co-N bond formation on the PtCo nanoparticle surface. Electron transfer from Co to Pt in the PtCo nanoparticles modified by the polymer is enhanced by the increase in the difference in electronegativity between Pt and Co compared with that in bare PtCo nanoparticles with the TM surface oxides. In addition, the dissolution of Co and Pt is prevented by the selective passivation of surface Co atoms and the decrease in the O-binding energy of surface Pt atoms. As a result, the catalytic activity and durability of PtCo nanoparticles for the ORR are significantly improved by the electronic ensemble effects. The proposed organic/inorganic hybrid concept will provide new insights into the tuning of nanomaterials consisting of heterogeneous metallic elements for various electrochemical and chemical applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a facile synthesis of three-dimensional (3D) nanodendrites of Pd nanoparticles (NPs) and nitrogen-doped carbon NPs (N-CNPs) by electroless deposition of Pd2+ ions. N-CNPs being an electron-enriched material act as a reducing agent. Moreover, the availability of a variety of nitrogen species in N-CNPs promotes the open arm structure as well as stabilizes the oriented 3D assembly of primary Pd NPs. The dendrites exhibit superior catalytic activity for methanol (0.5 M) oxidation in alkaline media (1 M NaOH) which is ascribed to the large electrochemical active surface area and the enhanced mass activity with repeated use. Further mass activity improvement has been realized after acid-treatment of dendrites which is attributed to the increment in the -OH group. The dendrites show higher mass activity (J(f) similar to 653 A g(-1)) in comparison with a commercial Pt-carbon/Pd-carbon (Pt-C/Pd-C) catalyst (J(f) similar to 46 and 163 A g(-1), respectively), better operational stability, superior CO tolerance with I-f/I-b (similar to 3.7) over a commercial Pt-C/Pd-C catalyst (I-f/I-b similar to 1.6 and 1.75, respectively) and may serve as a promising alternative to commercial Pt-C catalysts for anode application in alkaline fuel cells. To ensure the adaptability of our 3D-nanodendrites for other catalytic activities, we studied 4-nitrophenol reduction at room temperature. The 3D-nanodendrites show excellent catalytic activity toward 4-nitrophenol reduction, as well.