131 resultados para Frequency analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an earlier paper [1], it has been shown that velocity ratio, defined with reference to the analogous circuit, is a basic parameter in the complete analysis of a linear one-dimensional dynamical system. In this paper it is shown that the terms constituting velocity ratio can be readily determined by means of an algebraic algorithm developed from a heuristic study of the process of transfer matrix multiplication. The algorithm permits the set of most significant terms at a particular frequency of interest to be identified from a knowledge of the relative magnitudes of the impedances of the constituent elements of a proposed configuration. This feature makes the algorithm a potential tool in a first approach to a rational design of a complex dynamical filter. This algorithm is particularly suited for the desk analysis of a medium size system with lumped as well as distributed elements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A finite element formulation for the natural vibration analysis of tapered and pretwisted rotors has been presented. Numerical results for natural frequencies for various values of the geometric parameters and rotational speeds, have been computed for the case of rotors with and without pretwist. A Galerkin solution for the fundamental has also been worked out and has been used to provide a comparison for the finite element results. Charts for rapid estimation of the fundamental frequency parameter of tapered rotors, have been included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we give the performance of MQAM OFDM based WLAN in presence of single and multiple channels Zigbee interference. An analytical model for getting symbol error rate (SER) in presence of single and multiple channel Zigbee interference in AWGN and Rayleigh fading channel for MQAM OFDM system is given. Simulation results are compared with analytical symbol error rate (SER) of the MQAM-OFDM system. For analysis we have modeled the Zigbee interference using the power spectral density (PSD) of OQPSK modulation and finding the average interference power for each sub-carrier of the OFDM system. Then we have averaged the SER over all WLAN sub-carriers. Simulations closely match with the analytical models. It is seen from simulation and analytical results that performance of WLAN is severely affected by Zigbee interference. Symbol error rate (SER) for 16QAM and 64QAM OFDM system is of order of 10(-2) for SIR (signal to interference ratio) of 20dB and 30dB respectively in presence of single Zigbee interferer inside the WLAN frequency band for Rayleigh fading channel. For SIR values more than 30dB and 40dB the SER approaches the SER without interference for 16QAM and 64QAM OFDM system respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hematopoietic malignancies like leukemia and lymphoma are characteristically associated with various chromosomal translocations. Follicular lymphoma (FL) and mantle cell lymphoma (MCL) are two subtypes of non-Hodgkin's lymphoma which possess t(14;18) and t(11;14) translocations, respectively. The incidence of FL and MCL is higher in the western countries as compared to India. Interestingly, the associated translocations are also found in healthy individuals in western population, which is 50-80% for t(14;18), whereas t(11;14) occurs at a very low frequency. However, there are no studies to explore thes translocations in healthy Indian population, which could explain the lower incidence of FL and MCL. We employed Southern hybridization following nested PCR to detect above translocations in healthy individuals from India. Our results suggest that this assay can detect one t(14;18) translocation event in up to 10(7) normal cells where as one t(11;14) in 10(8) normal cells. According to our results, 87 out of 253 individuals carry t(14;18) indicating 34% prevalence in the population. The presence of this translocation was also detectable at the transcript level. Although, no gender-based difference was observed, an age-dependent increase in the prevalence of translocation was found in adults. However, even after studying 210 people, we could not detect any t(11;14) translocation, indicating that it is uncommon in Indian population. These results suggest that lower incidence of FL and MCL in India could be attributed to lower prevalence of these translocations in healthy individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A vibration isolator is described which incorporates a near-zero-spring-rate device within its operating range. The device is an assembly of a vertical spring in parallel with two inclined springs. A low spring rate is achieved by combining the equivalent stiffness in the vertical direction of the inclined springs with the stiffness of the vertical central spring. It is shown that there is a relation between the geometry and the stiffness of the individual springs that results in a low spring rate. Computer simulation studies of a single-degree-of-freedom model for harmonic base input show that the performance of the proposed scheme is superior to that of the passive schemes with linear springs and skyhook damping configuration. The response curves show that, for small to large amplitudes of base disturbance, the system goes into resonance at low frequencies of excitation. Thus, it is possible to achieve very good isolation over a wide low-frequency band. Also, the damper force requirements for the proposed scheme are much lower than for the damper force of a skyhook configuration or a conventional linear spring with a semi-active damper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-ray powder diffraction along with differential thermal analysis carried out on the as-quenched samples in the 3BaO-3TiO(2)-B2O3 system confirmed their amorphous and glassy nature, respectively. The dielectric constants in the 1 kHz-1 MHz frequency range were measured as a function of temperature (323-748 K). The dielectric constant and loss were found to be frequency independent in the 323-473 K temperature range. The temperature coefficient of dielectric constant was estimated using Havinga's formula and found to be 16 ppm K-1. The electrical relaxation was rationalized using the electric modulus formalism. The dielectric constant and loss were 17 +/- 0.5 and 0.005 +/- 0.001, respectively at 323 K in the 1 kHz-1 MHz frequency range which may be of considerable interest to capacitor industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using asymptotics, the coupled wavenumbers in an infinite fluid-filled flexible cylindrical shell vibrating in the beam mode (viz. circumferential wave order n = 1) are studied. Initially, the uncoupled wavenumbers of the acoustic fluid and the cylindrical shell structure are discussed. Simple closed form expressions for the structural wavenumbers (longitudinal, torsional and bending) are derived using asymptotic methods for low- and high-frequencies. It is found that at low frequencies the cylinder in the beam mode behaves like a Timoshenko beam. Next, the coupled dispersion equation of the system is rewritten in the form of the uncoupled dispersion equation of the structure and the acoustic fluid, with an added fluid-loading term involving a parameter mu due to the coupling. An asymptotic expansion involving mu is substituted in this equation. Analytical expressions are derived for the coupled wavenumbers (as modifications to the uncoupled wavenumbers) separately for low- and high-frequency ranges and further, within each frequency range, for large and small values of mu. Only the flexural wavenumber, the first rigid duct acoustic cut-on wavenumber and the first pressure-release acoustic cut-on wavenumber are considered. The general trend found is that for small mu, the coupled wavenumbers are close to the in vacuo structural wavenumber and the wavenumbers of the rigid-acoustic duct. With increasing mu, the perturbations increase, until the coupled wavenumbers are better identified as perturbations to the pressure-release wavenumbers. The systematic derivation for the separate cases of small and large mu gives more insight into the physics and helps to continuously track the wavenumber solutions as the fluid-loading parameter is varied from small to large values. Also, it is found that at any frequency where two wavenumbers intersect in the uncoupled analysis, there is no more an intersection in the coupled case, but a gap is created at that frequency. This method of asymptotics is simple to implement using a symbolic computation package (like Maple). (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analytical expressions are derived, using asymptotics, for the fluid-structure coupled wavenumbers in a one-dimensional (1-D) structural acoustic waveguide. The coupled dispersion equation of the system is rewritten in the form of the uncoupled dispersion equation with an added term due to the fluid-structure coupling. As a result of this coupling, the prior uncoupled structural and acoustic wavenumbers, now become coupled structural and acoustic wavenumbers. A fluid-loading parameter e, defined as the ratio of mass of fluid to mass of the structure per unit area, is introduced which when set to zero yields the uncoupled dispersion equation. The coupled wavenumber is then expressed in terms of an asymptotic series in e. Analytical expressions are found as e is varied from small to large values. Different asymptotic expansions are used for different frequency ranges with continuous transitions occurring between them. This systematic derivation helps to continuously track the wavenumber solutions as the fluid-loading parameter is varied from small to large values. Though the asymptotic expansion used is limited to the first-order correction factor, the results are close to the numerical results. A general trend is that a given wavenumber branch transits from a rigid-walled solution to a pressure-release solution with increasing E. Also, it is found that at any frequency where two wavenumbers intersect in the uncoupled analysis, there is no more an-intersection in the coupled case, but a gap is created at that frequency. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coupled wavenumbers of a fluid-filled flexible cylindrical shell vibrating in the axisymmetric mode are studied. The coupled dispersion equation of the system is rewritten in the form of the uncoupled dispersion equation of the structure and the acoustic fluid, with an added fluid-loading term involving a parameter e due to the coupling. Using the smallness of Poisson's ratio (v), a double-asymptotic expansion involving e and v 2 is substituted in this equation. Analytical expressions are derived for the coupled wavenumbers (for large and small values of E). Different asymptotic expansions are used for different frequency ranges with continuous transitions occurring between them. The wavenumber solutions are continuously tracked as e varies from small to large values. A general trend observed is that a given wavenumber branch transits from a rigidwalled solution to a pressure-release solution with increasing E. Also, it is found that at any frequency where two wavenumbers intersect in the uncoupled analysis, there is no more an intersection in the coupled case, but a gap is created at that frequency. Only the axisymmetric mode is considered. However, the method can be extended to the higher order modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose and analyze a novel racetrack resonator based vibration sensor for inertial grade application. The resonator is formed with an Anti Resonance Reflecting Optical Waveguide (ARROW) structure which offers the advantage of low loss and single mode propagation. The waveguide is designed to operate at 1310nm and TM mode of propagation since the Photo-elastic co-efficient is larger than TE mode in a SiO2/ Si3N4/ SiO2. The longer side of the resonator is placed over a cantilever beam with a proof mass. A single bus waveguide is coupled to the resonator structure. When the beam vibrates the resonator arm at the foot of the cantilever experiences maximum stress. Due to opto-mechanical coupling the effective refractive index of the resonator changes hence the resonance wavelength shifts. The non uniform cantilever beam has a dimension of 1.75mm X 0.45mm X 0.020mm and the proof mass has a dimension of 3mm X 3mm X 0.380mm. The proof mass lowers the natural frequency of vibration to 410Hz, hence designed for inertial navigation application. The operating band of frequency is from DC to 100Hz and acceleration of less than 1g. The resonator has a Free Spectral Range (FSR) of 893pm and produces a phase change of 22.4mrad/g.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a formulation of an approximate spectral element for uniform and tapered rotating Euler-Bernoulli beams. The formulation takes into account the varying centrifugal force, mass and bending stiffness. The dynamic stiffness matrix is constructed using the weak form of the governing differential equation in the frequency domain, where two different interpolating functions for the transverse displacement are used for the element formulation. Both free vibration and wave propagation analysis is performed using the formulated elements. The studies show that the formulated element predicts results, that compare well with the solution available in the literature, at a fraction of the computational effort. In addition, for wave propagation analysis, the element shows superior convergence. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical investigation of the transverse shear wave mode tuning with a resonator mass (packing mass) on a Lead Zirconium Titanate (PZT) crystal bonded together with a host plate and its equivalent electric circuit parameters are presented. The energy transfer into the structure for this type of wave modes are much higher in this new design. The novelty of the approach here is the tuning of a single wave mode in the thickness direction using a resonator mass. First, a one-dimensional constitutive model assuming the strain induced only in the thickness direction is considered. As the input voltage is applied to the PZT crystal in the thickness direction, the transverse normal stress distribution induced into the plate is assumed to have parabolic distribution, which is presumed as a function of the geometries of the PZT crystal, packing mass, substrate and the wave penetration depth of the generated wave. For the PZT crystal, the harmonic wave guide solution is assumed for the mechanical displacement and electric fields, while for the packing mass, the former is solved using the boundary conditions. The electromechanical characteristics in terms of the stress transfer, mechanical impedance, electrical displacement, velocity and electric field are analyzed. The analytical solutions for the aforementioned entities are presented on the basis of varying the thickness of the PZT crystal and the packing mass. The results show that for a 25% increase in the thickness of the PZT crystal, there is ~38% decrease in the first resonant frequency, while for the same change in the thickness of the packing mass, the decrease in the resonant frequency is observed as ~35%. Most importantly the tuning of the generated wave can be accomplished with the packing mass at lower frequencies easily. To the end, an equivalent electric circuit, for tuning the transverse shear wave mode is analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the increased utilization of advanced composites in strategic industries, the concept of Structural Health Monitoring (SHM) with its inherent advantages is gaining ground over the conventional methods of NDE and NDI. The most attractive feature of this concept is on-line evaluation using embedded sensors. Consequently, development of methodologies with identification of appropriate sensors such as PVDF films becomes the key for exploiting the new concept. And, of the methods used for on-line evaluation acoustic emission has been most effective. Thus, Acoustic Emission (AE) generated during static tensile loading of glass fiber reinforced plastic composites was monitored using a Polyvinylidene fluoride (PVDF) film sensor. The frequency response of the film sensor was obtained with pencil lead breakage tests to choose the appropriate band of operation. The specimen considered for the experiments were chosen to characterize the differences in the operation of the failure mechanisms through AE parametric analysis. The results of the investigations can be characterized using AE parameter indicating that a PVDF film sensor was effective as an AE sensor used in structural health monitoring on-line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A correlation of the infrared spectra of thiocarbonyl derivatives based on the literature data has been carried out. Assignments have also been made in some new systems. Since simple alkyl thioketones are unstable, we have prepared thiofenchone in order to obtain a reference C=S stretching frequency. The C=S stretching frequency in thiofenchone has been found around 1180 cm−1 which is in fair agreement with the value calculated for thioformaldehyde. In the case of the thiocarbonyl derivatives where the C=S group is linked to elements other than nitrogen, the stretching frequency is generally found in the region 1025–1225 cm−1. Strong vibrational coupling is operative in the case of the nitrogen containing thiocarbonyl derivatives and three bands seem to consistently appear in the regions 1395–1570 cm−1, 1260–1420 cm−1, 940–1140 cm−1 due to the mixed vibrations. These bands, which may be tentatively designated as the “-N-C=S I, II and III bands”, could be useful in qualitative analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inductors are important energy storage elements that are used as filters in switching power converters. The operating efficiency of power inductors depend on the initial design choices and they remain as one of the most inefficient elements in a power converter. The focus of this paper is to explore the inductor design procedure from the point of efficiency and operating temperature. A modified form of the area product approach is used as starting point for the inductor design. The equations which estimate the power loss in core and copper winding are described. The surface temperature of the inductor is modelled using heat transfer equations for radiation and natural convection. All design assumptions are verified by actual experimental data and results show a good match with the analysis.