304 resultados para Free-Template
Resumo:
Two new copper(II) complexes, [Cu-2(L-1)(2)](ClO4)(2) (1) and [Cu(L-2)(ClO4)] (2), of the highly unsymmetrical tetradentate (N3O) Schiff base ligands HL1 and HL2 (where HL1 = N-(2-hydroxyacetophenone)-bis-3-aminopropylamine and HL2 = N-(salicyldehydine)-bis-3-aminopropylamine) have been synthesised using a template method. Their single crystal X-ray structures show that in complex 1 two independent copper(II) centers are doubly bridged through sphenoxo-O atoms (O1A and O1B) of the two ligands and each copper atom is five-coordinated with a distorted square pyramidal geometry. The asymmetric unit of complex 2 consists of two crystallographically independe N-(salicylidene) bis(aminopropyl)amine-copper(II) molecules, A and B, with similar square pyramidal geometries. Cryomagnetic susceptibility measurements (5-300 K) on complex 1 reveal a distinct antiferromagnetic interaction with J=-23.6 cm(-1), which is substantiated by a DFT calculation (J=-27.6 cm(-1)) using the B3LYP functional. Complex 1, immobilized over highly ordered hexagonal mesoporous silica, shows moderate catalytic activity for the epoxidation of cyclohexene and styrene in the presence of TBHP as an oxidant.
Resumo:
Glass transition and relaxation of the glycerol-water (G-W) binary mixture system have been studied over the glycerol concentration range of 5-85 mol% by using the highly sensitive technique of electron spin resonance (ESR). For the water rich mixture the glass transition,sensed by the dissolved spin probe, arises from the vitrified mesoscopic portion of the binary system. The concentration dependence of the glass transition temperature manifests a closely related molecular level cooperativity in the system. A drastic change in the mesoscopic structure of the system at the critical concentration of 40 mol is confirmed by an estimation of the spin probe effective volume in a temperature range where the tracer reorientation is strongly coupled to the system dynamics.
Resumo:
The interdependence of the concept of allostery and enzymatic catalysis, and they being guided by conformational mobility is gaining increased prominence. However, to gain a molecular level understanding of llostery and hence of enzymatic catalysis, it is of utter importance that the networks of amino acids participating in allostery be deciphered. Our lab has been exploring the methods of network analysis combined with molecular dynamics simulations to understand allostery at molecular level. Earlier we had outlined methods to obtain communication paths and then to map the rigid/flexible regions of proteins through network parameters like the shortest correlated paths, cliques, and communities. In this article, we advance the methodology to estimate the conformational populations in terms of cliques/communities formed by interactions including the side-chains and then to compute the ligand-induced population shift. Finally, we obtain the free-energy landscape of the protein in equilibrium, characterizing the free-energy minima accessed by the protein complexes. We have chosen human tryptophanyl-tRNA synthetase (hTrpRS), a protein esponsible for charging tryptophan to its cognate tRNA during protein biosynthesis for this investigation. This is a multidomain protein exhibiting excellent allosteric communication. Our approach has provided valuable structural as well as functional insights into the protein. The methodology adopted here is highly generalized to illuminate the linkage between protein structure networks and conformational mobility involved in the allosteric mechanism in any protein with known structure.
Resumo:
Asymmetric diadenosine tetraphosphate (Ap(4)A) hydrolases degrade the metabolite Ap(4)A back into ATP and AMP. The three-dimensional crystal structure of Ap(4)A hydrolase (16 kDa) from Aquifex aeolicus has been determined in free and ATP-bound forms at 1.8 and 1.95 angstrom resolution, respectively. The overall three-dimensional crystal structure of the enzyme shows an alpha beta alpha-sandwich architecture with a characteristic loop adjacent to the catalytic site of the protein molecule. The ATP molecule is bound in the primary active site and the adenine moiety of the nucleotide binds in a ring-stacking arrangement equivalent to that observed in the X-ray structure of Ap(4)A hydrolase from Caenorhabditis elegans. Binding of ATP in the active site induces local conformational changes which may have important implications in the mechanism of substrate recognition in this class of enzymes. Furthermore, two invariant water molecules have been identified and their possible structural and/or functional roles are discussed. In addition, modelling of the substrate molecule at the primary active site of the enzyme suggests a possible path for entry and/or exit of the substrate and/or product molecule.
Resumo:
Force-free equilibrium configurations of magnetic-pressure-dominated magnetized supersonic jets confined by slowly varying external pressure are investigated analytically. For the case where internal dissipation mechanisms are active, the lowest-energy field configuration is found to be the superposition of an axisymmetric mode and a helical mode with a wavelength equal to 5 times the jet radius, and the pressure below which the nonaxisymmetric mode becomes energetically favorable is given as 2700 times the product of the 4th power of the magnetic helicity per unit length and the -6th power of the magnetic flux. A model of the total and polarized emission of such a configuration is developed and applied to the extended well-collimated astronomically resolved jet NGC 6251. The model is shown to reproduce significant features such as transverse oscillations of the ridge line, width oscillations and emission knots, the projected magnetic-field configuration, oscillations of the degree of polarization, and the distribution of the Faraday rotation measure.
Resumo:
It is shown that a magnetic-pressure-dominated, supersonic jet which expands (or contracts) in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to take place, the effective reconnection time must be a fraction ɛ ⪉ 1 of the expansion time. The amount of energy dissipation is calculated, and it is concluded that magnetic energy dissipation could, in principle, power the observed synchrotron emission in extragalactic radio jets such as NGC 6251. However, this mechanism is only viable if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.
Resumo:
The room temperature (RT) tensile behaviour of a free-standing high activity Pt-aluminide bond coat has been evaluated by microtensile testing technique. The coating had a typical three-layer microstructure. The stress-strain plot for the free-standing coating was linear, indicating the coating to be brittle at RT. Different fracture features were observed across the coating layers, namely quasi-cleavage in the outer layer and inner interdiffusion zone, and cleavage in the intermediate layer. By employing interrupted tensile test and observing the cross-sectional microstructure of the tested specimens, it was determined that failure of the microtensile samples occurred by the initiation of a single crack in the intermediate layer of the coating and its subsequent inside-out propagation. Such a mechanism of failure has been explained in terms of the fracture features observed across the sample thickness. This mechanism of failure is consistent with fracture toughness values of the individual coating layers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Anion directed, template syntheses of two dinuclear copper(II) complexes of mono-condensed Schiff base ligand Hdipn (4-[(3-aminopentylimino)-methyl]-benzene-1,3-diol) involving 2,4- dihydroxybenzaldehyde and 1,3-diaminopentane were realized in the presence of bridging azide and acetate anions. Both complexes, [Cu-2(dipn)(2)(N-3)(2)] (1) and [Cu-2(dip(n))(2)(OAc)(2)] (2) have been characterized by X-ray crystallography. The two mononuclear units are joined together by basal-apical, double end-on azido bridges in complex 1 and by basal-apical, double mono-atomic acetate oxygen-bridges in 2. Both complexes form rectangular grid-like supramolecular structures via H-bonds connecting the azide or acetate anion and the p-hydroxy group of 2,4- dihydroxybenzaldehyde. Variable-temperature (300-2 K) magnetic susceptibility measurements reveal that complex 1 has antiferromagnetic coupling (J = -2.10 cm (1)) through the azide bridge while 2 has intra-dimer ferromagnetic coupling through the acetate bridge and inter-dimer antiferromagnetic coupling through H-bonds (J = 2.85 cm (1), J' = -1.08 cm (1)). (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Instrumented indentation experiments on a Zr-based bulk metallic glass (BMG) in as-cast, shot-peened and structurally relaxed conditions were conducted to examine the dependence of plastic deformation on its structural state. Results show significant differences in hardness, H, with structural relaxation increasing it and shot peening markedly reducing it, and slightly changed morphology of shear bands around the indents. This is in contrast to uniaxial compressive yield strength, sigma(y), which remains invariant with the change in the structural state of the alloys investigated. The plastic constraint factor, C = H/sigma(y), of the relaxed BMG increases compared with that of the as-cast glass, indicating enhanced pressure sensitivity upon annealing. In contrast, C of the shot-peened layer was found to be similar to that observed in crystalline metals, indicating that severe plastic deformation could eliminate pressure sensitivity. Microscopic origins for this result, in terms of shear transformation zones and free volume, are discussed.
Resumo:
A unit cube in k dimensions (k-cube) is defined as the Cartesian product R-1 x R-2 x ... x R-k where R-i (for 1 <= i <= k) is a closed interval of the form [a(i), a(i) + 1] on the real line. A graph G on n nodes is said to be representable as the intersection of k-cubes (cube representation in k dimensions) if each vertex of C can be mapped to a k-cube such that two vertices are adjacent in G if and only if their corresponding k-cubes have a non-empty intersection. The cubicity of G denoted as cub(G) is the minimum k for which G can be represented as the intersection of k-cubes. An interesting aspect about cubicity is that many problems known to be NP-complete for general graphs have polynomial time deterministic algorithms or have good approximation ratios in graphs of low cubicity. In most of these algorithms, computing a low dimensional cube representation of the given graph is usually the first step. We give an O(bw . n) algorithm to compute the cube representation of a general graph G in bw + 1 dimensions given a bandwidth ordering of the vertices of G, where bw is the bandwidth of G. As a consequence, we get O(Delta) upper bounds on the cubicity of many well-known graph classes such as AT-free graphs, circular-arc graphs and cocomparability graphs which have O(Delta) bandwidth. Thus we have: 1. cub(G) <= 3 Delta - 1, if G is an AT-free graph. 2. cub(G) <= 2 Delta + 1, if G is a circular-arc graph. 3. cub(G) <= 2 Delta, if G is a cocomparability graph. Also for these graph classes, there axe constant factor approximation algorithms for bandwidth computation that generate orderings of vertices with O(Delta) width. We can thus generate the cube representation of such graphs in O(Delta) dimensions in polynomial time.
Resumo:
This paper presents a formulation of an approximate spectral element for uniform and tapered rotating Euler-Bernoulli beams. The formulation takes into account the varying centrifugal force, mass and bending stiffness. The dynamic stiffness matrix is constructed using the weak form of the governing differential equation in the frequency domain, where two different interpolating functions for the transverse displacement are used for the element formulation. Both free vibration and wave propagation analysis is performed using the formulated elements. The studies show that the formulated element predicts results, that compare well with the solution available in the literature, at a fraction of the computational effort. In addition, for wave propagation analysis, the element shows superior convergence. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A modified form of Green's integral theorem is employed to derive the energy identity in any water wave diffraction problem in a single-layer fluid for free-surface boundary condition with higher-order derivatives. For a two-layer fluid with free-surface boundary condition involving higher-order derivatives, two forms of energy identities involving transmission and reflection coefficients for any wave diffraction problem are also derived here by the same method. Based on this modified Green's theorem, hydrodynamic relations such as the energy-conservation principle and modified Haskind–Hanaoka relation are derived for radiation and diffraction problems in a single as well as two-layer fluid.
Resumo:
Aurora kinases are essential for chromosomal segregation and cell division and thereby important for maintaining the proper genomic integrity. There are three classes of aurora kinases in humans: A, B, and C. Aurora kinase A is frequently overexpressed in various cancers. The link of the overexpression and tumorigenesis is yet to be understood. By employing virtual screening, we have found that anacardic acid, a pentadecane aliphatic chain containing hydroxylcarboxylic acid, from cashew nut shell liquid could be docked in Aurora kinases A and B. Remarkably, we found that anacardic acid could potently activate the Aurora kinase A mediated phosphorylation of histone H3, but at a similar concentration the activity of aurora kinase B remained unaffected in vitro. Mechanistically, anacardic acid induces the structural changes and also the autophosphorylation of the aurora kinase A to enhance the enzyme activity. This data thus indicate anacardic acid as the first small-molecule activator of Aurora kinase, which could be highly useful for probing the function of hyperactive (overexpressed) Aurora kinase A.
Resumo:
It Is well established that a sequence template along with the database is a powerful tool for identifying the biological function of proteins. Here, we describe a method for predicting the catalytic nature of certain proteins among the several protein structures deposited in the Protein Data Bank (PDB) For the present study, we considered a catalytic triad template (Ser-His-Asp) found in serine proteases We found that a geometrically optimized active site template can be used as a highly selective tool for differentiating an active protein among several inactive proteins, based on their Ser-His-Asp interactions. For any protein to be proteolytic in nature, the bond angle between Ser O-gamma-Ser H-gamma His N-epsilon 2 in the catalytic triad needs to be between 115 degrees and 140 degrees The hydrogen bond distance between Ser H-gamma His N-epsilon 2 is more flexible in nature and it varies from 2 0 angstrom to 27 angstrom while in the case of His H-delta 1 Asp O-delta 1, it is from 1.6 angstrom to 2.0 angstrom In terms of solvent accessibility, most of the active proteins lie in the range of 10-16 angstrom(2), which enables easy accessibility to the substrate These observations hold good for most catalytic triads and they can be employed to predict proteolytic nature of these catalytic triads (C) 2010 Elsevier B V All rights reserved.
Resumo:
Amphiphilic sugars exhibit both lyotropic and thermotropic liquid-crystalline behavior. Interestingly, in spite of the abundance of chiral centers in amphiphilic sugars, their liquid-crystalline phases do not exhibit macroscopic chirality. Herein, we report on the first observation of macroscopic chirality in sugar-based bolaamphiphiles containing free hydroxyl groups. The manifestation of the chiral smectic C* phase in these bolaamphiphiles has been observed to be critically dependent on the presence of the azobenzene moiety and the suitable length of the methylene spacer. These results imply that by suitable selection of linker groups, mesogenic bolaamphiphiles possessing macroscopic chirality can be designed using a variety of naturally available sugar derivatives.