58 resultados para Finite-impulse response
Effects of phase inhomogeneity and boundary conditions on the dynamic response of SMA wire actuators
Resumo:
This paper reports the simulation results from the dynamic analysis of a Shape Memory Alloy (SMA) actuator. The emphasis is on understanding the dynamic behavior under various loading rates and boundary conditions, resulting in complex scenarios such as thermal and stress gradients. Also, due to the polycrystalline nature of SMA wires, presence of microstructural inhomogeneity is inevitable. Probing the effect of inhomogeneity on the dynamic behavior can facilitate the prediction of life and characteristics of SMA wire actuator under varieties of boundary and loading conditions. To study the effect of these factors, an initial boundary value problem of SMA wire is formulated. This is subsequently solved using finite element method. The dynamic response of the SMA wire actuator is analyzed under mechanical loading and results are reported. Effect of loading rate, micro-structural inhomogeneity and thermal boundary conditions on the dynamic response of SMA wire actuator is investigated and the simulation results are reported.
Resumo:
In this paper, a model for composite beam with embedded de-lamination is developed using the wavelet based spectral finite element (WSFE) method particularly for damage detection using wave propagation analysis. The simulated responses are used as surrogate experimental results for the inverse problem of detection of damage using wavelet filtering. The WSFE technique is very similar to the fast fourier transform (FFT) based spectral finite element (FSFE) except that it uses compactly supported Daubechies scaling function approximation in time. Unlike FSFE formulation with periodicity assumption, the wavelet-based method allows imposition of initial values and thus is free from wrap around problems. This helps in analysis of finite length undamped structures, where the FSFE method fails to simulate accurate response. First, numerical experiments are performed to study the effect of de-lamination on the wave propagation characteristics. The responses are simulated for different de-lamination configurations for both broad-band and narrow-band excitations. Next, simulated responses are used for damage detection using wavelet analysis.
Resumo:
In the determination of the response time of u.h.v. damped capacitive impulse voltage dividers using the CIGRE IMR-1MS group (1) method and the arrangement suggested by the International Electrotechnical Commission (the I EC square loop),the surge impedance of the connecting lead has been found to influence the accuracy of determination. To avoid this difficulty,a new graphical procedure is proposed. As this method uses only those data points which can be determined with good accuracy, errors in response-time area evaluation do not influence the result.
Resumo:
This paper presents the results of seismic response analysis of layered ground in Ahmedabad City during the earthquake in Bhuj on 26(th) January 2001. An attempt has been made to understand the reasons for the failure of multistoreyed buildings founded on soft alluvial deposits in Ahmedabad. Standard Penetration test at a site very close to the Sabarmati river belt was carried out for geotechnical investigations. The program SHAKE91, widely used in the field of earthquake engineering for computing the seismic response of horizontally layered soil deposits, was used to analyse the soil profile at the selected site considering the ground as one dimensional layered elastic system. The ground accelerations recorded at the ground floor of the Regional Passport Staff Quarters building, which is very close to the investigated site, was used as input motion. Also, Finite Element Analysis was carried out for different configurations of multistorey building frames for evaluating their natural frequencies and is compared with the predominant frequency of the layered soil system. The results reveal that the varying degree of damage to multistorey buildings in the close proximity of Sabarmati river area was essentially due to the large amplification of the ground and the near resonance condition.
Resumo:
Nonlinear analysis of batter piles in soft clay is performed using the finite element technique. As the batter piles are not only governed by lateral load but also axial load, the effect of P- Delta moment and geometric stiffness matrix is included in the analysis. For implementing the nonlinear soil behavior, reduction in soil strength (degradation), and formation of gap with number of load cycles, a numerical model is developed where a hyperbolic relation is adopted for the soil in static condition and hyperbolic relation considering degradation and gap for cyclic load condition. The numerical model is validated with published experimental results for cyclic lateral loading and the hysteresis loops are developed to predict the load-deflection behavior and soil resistance behavior during consecutive cycles of loading. This paper highlights the importance of a rigorous degradation model for subsequent cycles of loading on the pile-soil system by a hysteretic representation.
Resumo:
We consider the speech production mechanism and the asso- ciated linear source-filter model. For voiced speech sounds in particular, the source/glottal excitation is modeled as a stream of impulses and the filter as a cascade of second-order resonators. We show that the process of sampling speech signals can be modeled as filtering a stream of Dirac impulses (a model for the excitation) with a kernel function (the vocal tract response),and then sampling uniformly. We show that the problem of esti- mating the excitation is equivalent to the problem of recovering a stream of Dirac impulses from samples of a filtered version. We present associated algorithms based on the annihilating filter and also make a comparison with the classical linear prediction technique, which is well known in speech analysis. Results on synthesized as well as natural speech data are presented.
Resumo:
The overall elastic response of a bundle of coated cylinders is a major aspect of thermal, nuclear and automotive engineering designs. This paper extends the previous work on tubular bundles to assess the effect of coating material and thickness. A major contribution from this paper is determining the overall transverse elastic response of coated thick cylinders by extending the Michell stress function approach in conjunction with contact mechanics. Finite element results using contact elements pave the way for applying the contact stress boundary conditions for Michell analysis. Theoretical and finite element analyses overall give results consistent with the previous work, and the results also fall within the well-established Voigt-Reuss bounds. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
This study presents the response of a vertically loaded pile in undrained clay considering spatially distributed undrained shear strength. The probabilistic study is performed considering undrained shear strength as random variable and the analysis is conducted using random field theory. The inherent soil variability is considered as source of variability and the field is modeled as two dimensional non-Gaussian homogeneous random field. Random field is simulated using Cholesky decomposition technique within the finite difference program and Monte Carlo simulation approach is considered for the probabilistic analysis. The influence of variance and spatial correlation of undrained shear strength on the ultimate capacity as summation of ultimate skin friction and end bearing resistance of pile are examined. It is observed that the coefficient of variation and spatial correlation distance are the most important parameters that affect the pile ultimate capacity.
Resumo:
This paper presents a newly developed wavelet spectral finite element (WFSE) model to analyze wave propagation in anisotropic composite laminate with a transverse surface crack penetrating part-through the thickness. The WSFE formulation of the composite laminate, which is based on the first-order shear deformation theory, produces accurate and computationally efficient results for high frequency wave motion. Transverse crack is modeled in wavenumber-frequency domain by introducing bending flexibility of the plate along crack edge. Results for tone burst and impulse excitations show excellent agreement with conventional finite element analysis in Abaqus (R). Problems with multiple cracks are modeled by assembling a number of spectral elements with cracks in frequency-wavenumber domain. Results show partial reflection of the excited wave due to crack at time instances consistent with crack locations. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The AA5086 aluminum alloy sheets with different starting textures were subjected to shock wave deformation with an input impulse of similar to 0.2 Ns. Microstructural examination indicate no significant change in grain size; however, the evolution of substructure manifesting intra-granular misorientation was evident. The improvement in hardness indicates the absence of recovery and strain hardening during shock deformation. Shock deformed samples show characteristic texture evolution with high Brass {110}< 112 > component. The study demonstrates the viability of high velocity forming of AA5086 aluminum alloy sheet using shock wave. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The clever designs of natural transducers are a great source of inspiration for man-made systems. At small length scales, there are many transducers in nature that we are now beginning to understand and learn from. Here, we present an example of such a transducer that is used by field crickets to produce their characteristic song. This transducer uses two distinct components-a file of discrete teeth and a plectrum that engages intermittently to produce a series of impulses forming the loading, and an approximately triangular membrane, called the harp, that acts as a resonator and vibrates in response to the impulse-train loading. The file-and-plectrum act as a frequency multiplier taking the low wing beat frequency as the input and converting it into an impulse-train of sufficiently high frequency close to the resonant frequency of the harp. The forced vibration response results in beats producing the characteristic sound of the cricket song. With careful measurements of the harp geometry and experimental measurements of its mechanical properties (Young's modulus determined from nanoindentation tests), we construct a finite element (FE) model of the harp and carry out modal analysis to determine its natural frequency. We fine tune the model with appropriate elastic boundary conditions to match the natural frequency of the harp of a particular species-Gryllus bimaculatus. We model impulsive loading based on a loading scheme reported in literature and predict the transient response of the harp. We show that the harp indeed produces beats and its frequency content matches closely that of the recorded song. Subsequently, we use our FE model to show that the natural design is quite robust to perturbations in the file. The characteristic song frequency produced is unaffected by variations in the spacing of file-teeth and even by larger gaps. Based on the understanding of how this natural transducer works, one can design and fabricate efficient microscale acoustic devices such as microelectromechanical systems (MEMS) loudspeakers.
Resumo:
Piezo-composite membranes have advantages over motorized flapping where frequencies are high and certain coupling between bending and twisting is useful to generate lift and forward flight. We draw examples of fruit fly and bumble bee. Wings with Piezo ceramic PZT coating are realized. The passive mechanical response of the wing is characterized experimentally and validated using finite element simulation. Piezoelectric actuation with uniform electrode coating is characterized and optimal frequencies for flapping are identified. The experimental data are used in an empirical model and advanced ratio for a flapping insect like condition for various angular orientations is estimated.
Resumo:
Response analysis of a linear structure with uncertainties in both structural parameters and external excitation is considered here. When such an analysis is carried out using the spectral stochastic finite element method (SSFEM), often the computational cost tends to be prohibitive due to the rapid growth of the number of spectral bases with the number of random variables and the order of expansion. For instance, if the excitation contains a random frequency, or if it is a general random process, then a good approximation of these excitations using polynomial chaos expansion (PCE) involves a large number of terms, which leads to very high cost. To address this issue of high computational cost, a hybrid method is proposed in this work. In this method, first the random eigenvalue problem is solved using the weak formulation of SSFEM, which involves solving a system of deterministic nonlinear algebraic equations to estimate the PCE coefficients of the random eigenvalues and eigenvectors. Then the response is estimated using a Monte Carlo (MC) simulation, where the modal bases are sampled from the PCE of the random eigenvectors estimated in the previous step, followed by a numerical time integration. It is observed through numerical studies that this proposed method successfully reduces the computational burden compared with either a pure SSFEM of a pure MC simulation and more accurate than a perturbation method. The computational gain improves as the problem size in terms of degrees of freedom grows. It also improves as the timespan of interest reduces.