216 resultados para Fermi super-fluid
Resumo:
Within the Grassmannian U(2N)/U(N) x U(N) nonlinear sigma-model representation of localization, one can study the low-energy dynamics of both a free and interacting electron gas. We study the crossover between these two fundamentally different physical problems. We show how the topological arguments for the exact quantization of the Hall conductance are extended to include the Coulomb interaction problem. We discuss dynamical scaling and make contact with the theory of variable range hopping. (C) 2005 Pleiades Publishing, Inc.
Resumo:
We present results from a systematic numerical study of structural properties of an unforced, incompressible, homogeneous, and isotropic three-dimensional turbulent fluid with an initial energy spectrum that develops a cascade of kinetic energy to large wave numbers. The results are compared with those from a recently studied set of power-law initial energy spectra [C. Kalelkar and R. Pandit, Phys. Rev. E 69, 046304 (2004)] which do not exhibit such a cascade. Differences are exhibited in plots of vorticity isosurfaces, the temporal evolution of the kinetic energy-dissipation rate, and the rates of production of the mean enstrophy along the principal axes of the strain-rate tensor. A crossover between "non-cascade-type" and "cascade-type" behavior is shown numerically for a specific set of initial energy spectra.
Resumo:
We demonstrate the depinning of Fermi level on both p- and n-type germanium after sulfur passivation by aqueous (NH4)(2)S treatment. Schottky contacts realized using metals with a wide range of work functions produce nearly ideal behavior confirming that the Fermi level is depinned. Examination of the passivated surface using x-ray photoelectron spectroscopy reveals bonding between Ge and sulfur.It is shown that good Ohmic contacts to n-type Ge and a hole barrier height (phi(Bp)) of 0.6 eV to p-type Ge can be achieved after this passivation treatment, with Zr Schottky contacts. This is the highest phi(Bp) reported so far.
Resumo:
The present paper investigates the nature of the fluid flow when a spheroid is suspended in an infinitely extending elastico-viscous fluid defined by the constitutive equations given by Oldroyd or Rivlin and Ericksen, and is made to perform small amplitude oscillations along its axis. The solution of the vector wave equation is expressed in terms of the solution of the corresponding scalar wave equation, without the use of Heine's function or spheroidal wave functions. Two special cases (i) a sphere and (ii) a spheroid of small ellipticity, are studied in detail.
Resumo:
When a fluid with memory is injected into any flow region some assumptions regarding the initial state of stress have to be made in order to determine the state of stress at any subsequent instant. For a Maxwell fluid, it is assumed that the fluid near the surface of injection is suddenly stressed and responds by starting flow in accordance with the mechanical model chosen. The flow of a Maxwell fluid with a single relaxation time has been determined under the above assumption in the following two cases: (i) annulus between two porous concentric circular cylinders, and (ii) space between two porous and infinitely extending parallel plates. The nature of flow in the present case is similar to that of the Reiner-Rivlin fluids obtained by Narasimhan2).
Resumo:
The flow generated by the rotation of a sphere in an infinitely extending fluid has recently been studied by Goldshtik. The corresponding problem for non-Newtonian Reiner-Rivlin fluids has been studied by Datta. Bhatnagar and Rajeswari have studied the secondary flow between two concentric spheres rotating about an axis in the non-Newtonian fluids. This last investigation was further generalised by Rajeswari to include the effects of small radial suction or injection. In Part A of the present investigation, we have studied the secondary flow generated by the slow rotation of a single sphere in non-Newtonian fluid obeying the Rivlin-Ericksen constitutive equation. In Part B, the effects of small suction or injection have been studied which is applied in an arbitrary direction at the surface of the sphere. In the absence of suction or injection, the secondary flow for small values of the visco-elastic parameter is similar to that of Newtonian fluids with inclusion of inertia terms in the Oseen approximation. If this parameter exceeds Kc = 18R/219, whereR is the Reynolds number, the breaking of the flow field takes place into two domains, in one of which the stream lines form closed loops. For still higher values of this parameter, the complete reversal of the sense of the flow takes place. When suction or injection is included, the breaking of the flow persists under certain condition investigated in this paper. When this condition is broken, the breaking of the flow is obliterated.
Resumo:
Bhatnagar and Rathna (Quar. Journ. Mech. Appl. Maths., 1963,16, 329) investigated the flows of Newtonian, Reiner-Rivlin and Rivlin-Ericksen fluids between two rotating coaxial cones. In case of the last two types of fluids, they predicted the breaking of secondary flow field in any meridian plane. We find that such breaking is avoided by the application of a sufficiently strong azimuthal magnetic field arising from a line current along the axis of the cones.
Resumo:
The aim of the paper is to investigate the propagation of a pulse in a micropolar fluid contained in a visco-elastic membrane. It was undertaken with a view to study how closely we can approximate the flow of blood in arteries by the above model. We find that for large Reynolds number, the effect of micropolarity is hardly perceptible, whereas for small Reynolds numbers it is of considerable importance.
Resumo:
In this paper we have studied the flow of a micropolar fluid, whose constitutive equations were given by Eringen, in two dimensional plane flow. In two notes, we have discussed the validity of the boundary condition v=a ω and its effect on the entire flow field. We have restricted our study to the case when Stokes' approximation is valid, i. e. slow motion for it is difficult to uncouple the equations in the most general case.
Resumo:
We consider the secondary flows arising in the motion of a Maxwell fluid between two rotating coaxial cones having the same vertex. We find that in any meridian plane passing through the common axis of the cones, the flow field is divided into two regions. Such a division of flow field was first reported by Bhatnagar and Rathna.
Resumo:
The steady flow of a power law fluid in annuli with porous walls is investigated. The solution for the axial velocity component is obtained as a power series in terms of the cross flow Reynolds number, the first term of the series giving the solution for the case of the solid wall annulus. The cross flow is restricted to be such that the rate of injection of fluid at one wall of the annulus is equal to the rate of suction at the other wall and also we have considered only very small values of the cross flow velocity. The velocity profiles are drawn for different values of n and for different gaps and the results are discussed in detail. The behaviour of the average flux, in different eases is also discussed.
Resumo:
Following Weisskopf, the kinematics of quantum mechanics is shown to lead to a modified charge distribution for a test electron embedded in the Fermi-Dirac vacuum with interesting consequences.