295 resultados para FUNCTIONALIZED GRAPHENE
Resumo:
In this article, an ultrasonic wave propagation in graphene sheet is studied using nonlocal elasticity theory incorporating small scale effects. The graphene sheet is modeled as an isotropic plate of one-atom thick. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of wave propagation model is also derived for the graphene sheet. The nonlocal scale parameter introduces certain band gap region in in-plane and flexural wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. The explicit expressions for cutoff frequencies and escape frequencies are derived. The escape frequencies are mainly introduced because of the nonlocal elasticity. Obviously these frequencies are function of nonlocal scaling parameter. It has also been obtained that these frequencies are independent of y-directional wavenumber. It means that for any type of nanostructure, the escape frequencies are purely a function of nonlocal scaling parameter only. It is also independent of the geometry of the structure. It has been found that the cutoff frequencies are function of nonlocal scaling parameter (e(0)a) and the y-directional wavenumber (k(y)). For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(o)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this paper. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
By employing X-ray photoelectron spectroscopy (XPS), we have been able to establish the occurrence of charge-transfer doping in few-layer graphene covered with electron acceptor (TCNE) and donor (TTF) molecules. We have performed quantitative estimates of the extent of charge transfer in these complexes and elucidated the origin of unusual shifts of their Raman G-bands and explained the differences in the dependence of conductivity on n- and p-doping. The study unravels the cause of the apparent difference between the charge-transfer doping and electrochemical doping. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Rubberwood flour and cellulose have been plasticized by cyanoethylation and then blended with low-density polyethylene (LDPE). A small quantity of epoxy functionalized polyethylene i.e., polyethylene-co-glycidyl methacrylate (PEGMA) has been added to further enhance the mechanical properties. The mechanical properties were measured according to the standard ASTM methods. SEM analysis was performed for both fractured and unfractured blend specimens. The mechanical properties were improved by the addition of PEGMA compatibilizer. LDPE blends with cyanoethylated wood flour (CYWF) showed higher tensile strength and modulus than cyanoethylated cellulose CYC-LDPE blends. However CYC-LDPE blends exhibited higher relative elongation at break values as compared with the former. The TGA analysis showed lowering of thermal stability as the filler content is increased and degradation temperature of LDPE is shifted slightly to lower temperature. DSC analysis showed loss of crystallinity for the LDPE phase as the filler content is increased for both types of blends. Dielectric properties of the blends were similar to LDPE, but were lowered on adding PEGMA. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Third-order nonlinear absorption and refraction coefficients of a few-layer boron carbon nitride (BCN) and reduced graphene oxide (RGO) suspensions have been measured at 3.2 eV in the femtosecond regime. Optical limiting behavior is exhibited by BCN as compared to saturable absorption in RGO. Nondegenerate time-resolved differential transmissions from BCN and RGO show different relaxation times. These differences in the optical nonlinearity and carrier dynamics are discussed in the light of semiconducting electronic band structure of BCN vis-a-vis the Dirac linear band structure of graphene. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The discovery of graphene has aroused great interest in the properties and phenomena exhibited by two-dimensional inorganic materials, especially when they comprise only a single, two or a few layers. Graphene-like MoS2 and WS2 have been prepared by chemical methods, and the materials have been characterized by electron microscopy, atomic force microscopy (AFM) and other methods. Boron nitride analogues of graphene have been obtained by a simple chemical procedure starting with boric acid and urea and have been characterized by various techniques that include surface area measurements. A new layered material with the composition BCN possessing a few layers and a large surface area discovered recently exhibits a large uptake of CO2.
Resumo:
We report a detailed investigation of resistance noise in single layer graphene films on Si/SiO2 substrates obtained by chemical vapor deposition (CVD) on copper foils. We find that noise in these systems to be rather large, and when expressed in the form of phenomenological Hooge equation, it corresponds to Hooge parameter as large as 0.1-0.5. We also find the variation in the noise magnitude with the gate voltage (or carrier density) and temperature to be surprisingly weak, which is also unlike the behavior of noise in other forms of graphene, in particular those from exfoliation. (C) 2010 American Institute of Physics. doi:10.1063/1.3493655]
Resumo:
Using a continuum Dirac theory, we study the density and spin response of zigzag edge-terminated graphene ribbons subjected to edge potentials and Zeeman fields. Our analytical calculations of the density and spin responses of the closed system (fixed particle number) to the static edge fields, show a highly nonlinear Weber-Fechner type behavior where the response depends logarithmically on the edge potential. The dependence of the response on the size of the system (e.g., width of a nanoribbon) is also uncovered. Zigzag edge graphene nanoribbons, therefore, provide a realization of response of organs such as the eye and ear that obey Weber-Fechner law. We validate our analytical results with tight-binding calculations. These results are crucial in understanding important effects of electron-electron interactions in graphene nanoribbons such as edge magnetism, etc., and also suggest possibilities for device applications of graphene nanoribbons.
Resumo:
Graphene oxide-intercalated alpha-metal hydroxides were prepared using layers from the delaminated colloidal dispersions of cetyltrimethylammonium-intercalated graphene oxide and dodecylsulfate-intercalated alpha-hydroxide of nickel/cobalt as precursors. The reaction of the two dispersions leads to de-intercalation of the interlayer ions from both the layered solids and the intercalation of the negatively charged graphene oxide sheets between the positively charged layers of the alpha-hydroxide. Thermal decomposition of the intercalated solids yields graphene/nanocrystalline metal oxide composites. Electron microscopy analysis of the composites indicates that the nanoparticles are intercalated between graphene layers. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Research on conducting polymers, organic light emitting diodes and organic solar cells has been an exciting field for the past decade. The challenge with these organic devices is the long term stability of the active material. Organic materials are susceptible to chemical degradation in the presence of oxygen and moisture. The sensitivity of these materials towards oxygen and moisture makes it imperative to protect them by encapsulation. Polymer nanocomposites can be used as encapsulation materials in order to prevent material degradation. In the present work, amine functionalized alumina was used as a cross-linking and reinforcing material for the polymer matrix in order to fabricate the composites to be used for encapsulation of devices. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Raman spectroscopy were used to elucidate the surface chemistry. Thermogravimetric analysis techniques and CHN analysis were used to quantify grafting density of amine groups over the surface of the nanoparticles. Mechanical characterizations of the composites with various loadings were carried out with dynamic mechanical analyzer. It was observed that the composites have good thermal stability and mechanical flexibility, which are important for an encapsulant. The morphology of the composites was evaluated using scanning electron microscopy and atomic force microscopy.
Resumo:
Using ab initio methods we have investigated the fluorination of graphene and find that different stoichiometric phases can be formed without a nucleation barrier, with the complete “2D-Teflon” CF phase being thermodynamically most stable. The fluorinated graphene is an insulator and turns out to be a perfect matrix-host for patterning nanoroads and quantum dots of pristine graphene. The electronic and magnetic properties of the nanoroads can be tuned by varying the edge orientation and width. The energy gaps between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO) of quantum dots are size-dependent and show a confinement typical of Dirac fermions. Furthermore, we study the effect of different basic coverage of F on graphene (with stoichiometries CF and C4F) on the band gaps, and show the suitability of these materials to host quantum dots of graphene with unique electronic properties.
Resumo:
A number of doubly activated cyclopropanes were synthesized starting from various substituted bromosulfonium bromides in good yield. Regioselective ring-opening of cyclopropanes with tetrathiomolybdate as the sulfur transfer reagent gave dihydrothiophenes in excellent yield.
Resumo:
Electronic, magnetic, and structural properties of graphene flakes depend sensitively upon the type of edge atoms. We present a simple software tool for determining the type of edge atoms in a honeycomb lattice. The algorithm is based on nearest neighbor counting. Whether an edge atom is of armchair or zigzag type is decided by the unique pattern of its nearest neighbors. Particular attention is paid to the practical aspects of using the tool, as additional features such as extracting out the edges from the lattice could help in analyzing images from transmission microscopy or other experimental probes. Ultimately, the tool in combination with density-functional theory or tight-binding method can also be helpful in correlating the properties of graphene flakes with the different armchair-to-zigzag ratios. Program summary Program title: edgecount Catalogue identifier: AEIA_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEIA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66685 No. of bytes in distributed program, including test data, etc.: 485 381 Distribution format: tar.gz Programming language: FORTRAN 90/95 Computer: Most UNIX-based platforms Operating system: Linux, Mac OS Classification: 16.1, 7.8 Nature of problem: Detection and classification of edge atoms in a finite patch of honeycomb lattice. Solution method: Build nearest neighbor (NN) list; assign types to edge atoms on the basis of their NN pattern. Running time: Typically similar to second(s) for all examples. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The mechanical properties of composites of polymethylmethacrylate (PMMA) with two-dimensional graphene-like boron nitride (BN) have been investigated to explore the dependence of the properties on the number of BN layers. This study demonstrates that significantly improved mechanical properties are exhibited by the composite with the fewest number of BN layers. Thus, with incorporation of three BN layers, the hardness and elastic modulus of the composite showed an increase of 125% and 130%, respectively, relative to pure PMMA. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the strong nonlocal scale effect on the flexural wave propagation in a monolayer graphene sheet. The graphene is modeled as an isotropic plate of one atom thick. Nonlocal governing equation of motion is derived and wave propagation analysis is performed using spectral analysis. The present analysis shows that the flexural wave dispersion in graphene obtained by local and nonlocal elasticity theories is quite different. The nonlocal elasticity calculation shows that the wavenumber escapes to infinite at certain frequency and the corresponding wave velocity tends to zero at that frequency indicating localization and stationary behavior. This behavior is captured in the spectrum and dispersion curves. The cut-off frequency of flexural wave not only depend on the axial wavenumber but also on the nonlocal scaling parameter. The effect of axial wavenumber on the wave behavior in graphene is also discussed in the present manuscript. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate a robust strategy for obtaining a high dispersion of ultrafine Pt and PtRu nanoparticles on graphene by exploiting the nucleation of a metal precursor phase on graphite oxide surfaces. Our method opens up new possibilities to engineer graphene-based hybrids for applications in multifunctional nanoscale devices.