418 resultados para FLOW PHANTOM EXPERIMENT
Resumo:
The wedge shape is a fairly common cross-section found in many non-axisymmetric components used in machines, aircraft, ships and automobiles. If such components are forged between two mutually inclined dies the metal displaced by the dies flows into the converging as well as into the diverging channels created by the inclined dies. The extent of each type of flow (convergent/divergent) depends on the die—material interface friction and the included die angle. Given the initial cross-section, the length as well as the exact geometry of the forged cross-section are therefore uniquely determined by these parameters. In this paper a simple stress analysis is used to predict changes in the geometry of a wedge undergoing compression between inclined platens. The flow in directions normal to the cross-section is assumed to be negligible. Experiments carried out using wedge-shaped lead billets show that, knowing the interface friction and as long as the deformation is not too large, the dimensional changes in the wedge can be predicted with reasonable accuracy. The predicted flow behaviour of metal for a wide range of die angles and interface friction is presented: these characteristics can be used by the die designer to choose the die lubricant (only) if the die angle is specified and to choose both of these parameters if there is no restriction on the exact die angle. The present work shows that the length of a wedge undergoing compression is highly sensitive to die—material interface friction. Thus in a situation where the top and bottom dies are inclined to each other, a wedge made of the material to be forged could be put between the dies and then compressed, whereupon the length of the compressed wedge — given the degree of compression — affords an estimate of the die—material interface friction.
Resumo:
A room-temperature cathodic electrolytic process was developed in the laboratory to recover zinc from industrial leach residues. The various parameters affecting the electroleaching process were studied using a statistically designed experiment. To understand the mechanisms behind the electrode processes, cyclic voltammetry and galvanostatic studies were carried out. The role of Einh measurements in monitoring such an electroleaching procedure is also shown. Since significant amounts of iron were also present in the leach liquor, attempts were made to purify it before zinc recovery by electrowinning. Reductive dissolution and creation of anion vacancies were found to be responsible for the dissolution of zinc ferrite present in the leach residue. A flow sheet of the process is given.
Resumo:
The magnetofluid dynamic steady incompressible laminar boundary layer flow for a point sink with an applied magnetic field and mass transfer has been studied. The two-point boundary-value problem governed by self-similar equations has been solved numerically. It is observed that the magnetic field increases the skin friction, but reduces the heat transfer and mass flux diffusion. However, the skin friction, heat transfer and mass flux diffusion increase due to suction and the effect of injection is just opposite. Prandtl and Schmidt numbers affect the temperature and concentration, respectively.
Resumo:
In the present paper an exact similar solution of the Navier-Stokes equation for unsteady flow of a dilute suspension in a semi-infinite contracting or expanding circular pipe is presented. The effects of the Schmidt number (Sc), Reynolds number (|ε|), the volume fraction (α) and the relaxation time (τ) of the particulate phase on the flow characteristics are examined. The presence of the solid particles has been observed to influence the flow behaviour significantly. These solutions are valid down to the state of a completely collapsed pipe, since the nonlinearity is retained fully. The results may help understanding the flow near the heart and certain forced contractions or expansions of valved veins.
Resumo:
The steady flow of an incompressible, viscous, electrically conducting fluid between two parallel, infinite, insulated disks rotating with different angular velocities about two noncoincident axes has been investigated; under the application of a uniform magnetic field in the axial direction. The solutions for the symmetric and asymmetric velocities are presented. The interesting feature arising due to the magnetic field is that in the central region the flow attains a uniform rotation with mean angular velocity at all rotation speeds for sufficiently large Hartmann number. In this case the flow adjusts to the rotational velocities of the disks mainly in the boundary layers near the disks. The forces on the disks are found to increase due to the presence of the applied magnetic field.
Resumo:
With many innovations in process technology, forging is establishing itself as a precision manufacturing process: as forging is used to produce complex shapes in difficult materials, it requires dies of complex configuration of high strength and of wear-resistant materials. Extensive research and development work is being undertaken, internationally, to analyse the stresses in forging dies and the flow of material in forged components. Identification of the location, size and shape of dead-metal zones is required for component design. Further, knowledge of the strain distribution in the flowing metal indicates the degree to which the component is being work hardened. Such information is helpful in the selection of process parameters such as dimensional allowances and interface lubrication, as well as in the determination of post-forging operations such as heat treatment and machining. In the presently reported work the effect of aperture width and initial specimen height on the strain distribution in the plane-strain extrusion forging of machined lead billets is observed: the distortion of grids inscribed on the face of the specimen gives the strain distribution. The stress-equilibrium approach is used to optimise a model of flow in extrusion forging, which model is found to be effective in estimating the size of the dead-metal zone. The work carried out so far indicates that the methodology of using the stress-equilibrium approach to develop models of flow in closed-die forging can be a useful tool in component, process and die design.
Resumo:
A semi-similar solution of an unsteady laminar compressible three-dimensional stagnation point boundary layer flow with massive blowing has been obtained when the free stream velocity varies arbitrarily with time. The resulting partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme with a quasi-linearization technique in the nodal point region and an implicit finite-difference scheme with a parametric differentiation technique in the saddle point region. The results have been obtained for two particular unsteady free stream velocity distributions: (i) an accelerating stream and (ii) a fluctuating stream. Results show that the skin-friction and heat-transfer parameters respond significantly to the time dependent arbitrary free stream velocity. Velocity and enthalpy profiles approach their free stream values faster as time increases. There is a reverse flow in the y-wise velocity profile, and overshoot in the x-wise velocity and enthalpy profiles in the saddle point region, which increase as injection and wall temperature increase. Location of the dividing streamline increases as injection increases, but as the wall temperature and time increase, it decreases.
Resumo:
The laminar flow of a fairly concentrated suspension (in which the volume fraction Z of the solid particles < 0.4) in a spatially varying periodically curved pipe has been examined numerically. Unlike the case of interacting suspension flows, the particles are found to flow in a well-mixed fashion, altering both the axial and circumferential velocities and consequently the fluid flux in the tube, depending on their diffusivity and inertia. The magnitude of shear stress at the wall is enhanced, suggesting that, if applied to vascular system, the vascular wall could be prone to ulceration during pathological situations like polycythemia. The delay in adaptation of the deviation in Poiseuille flow velocity to the curvature changes is also discussed in detail.
Resumo:
The unsteady free convection boundary layer hydromagnectic flow near a stagnation point of a three-dimensional body with applied magnetic field and time-dependent wall temperature has been studied. Both semi-semilar and self-similar cases have been considered. The equations governing the above flow have been solved numerically using an implicit finite-difference scheme due to Keller. The magnetic field is found to reduce both the heat transfer and skin friction. The effect of the variation of the wall temperature with time and of mass transfer is found to be more pronounced on the heat transfer than on the skin friction. In self-similar case, for decelerating flow, there is temperature overshoot in the presence of fmagnetic field, but in semi-similar case overshoot occurs even without magnetic field due to the unsteadiness
Resumo:
The unsteadely laminar incompressible second-order boundary-layer flow at the stagnation point of a three-dimensional body has been studied for both nodal and saddle point regions. The effects of mass transfer and Prandtl number have been taken into account. The equations governing the flow have been solved numerically using an implicit finite-difference scheme. It has been found that the parameter characterizing the unsteadiness in the velocity of the free stream, the nature of the stagnation point, the mass transfer and Prandtl number strongly affect the second-order skin friction and heat transfer. The overall skin friction becomes less due to second-order effects but the heat transfer has the opposite behaviour. For large injection, the second-order skin-friction and heat-transfer results prevail over the first-order boundary layer results whereas for the case of large suction the behaviour is just the opposite.
Resumo:
The heat and mass transfer for unsteady laminar compressible boundary-layer flow, which is asymmetric with respect to a 3-dimensional stagnation point (i.e. for a jet incident at an angle on the body), have been studied. It is assumed that the free-stream velocity, wall temperature, and surface mass transfer vary arbitrarily with time and also that the gas has variable properties. The solution in the neighbourhood of the stagnation point has been obtained by series expansion in the longitudinal distance. The resulting partial differential equations have been solved numerically using an implicit finite-difference scheme. The results show that, in contrast with the symmetric flow, the maximum heat transfer does not occur at the stagnation point. The skin-friction and heat-transfer components due to asymmetric flow are only weakly affected by the mass transfer as compared to those components associated with symmetric flow. The variation of the wall temperature with time has a strong effect on the heat transfer component associated with the symmetric part of the flow. The skin friction and heat transfer are strongly affected by the variation of the density-viscosity product across the boundary layer. The skin friction responds more to the fluctuations of the free stream oscillating velocities than the heat transfer. The results have been compared with the available results and they are found to be in excellent agreement.
Resumo:
The flow, heat and mass transfer problem for a steady laminar incompressible boundary layer flow in an electrically conducting fluid over a longitudinal cylinder with an applied magnetic field has been studied. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The results are found to be strongly dependent on the magnetic field and dissipation parameter. The effect of the mass transfer is more pronounced on the skin friction than on the heat transfer. The results have been compared with those of the series solution, the asymptotic solution, the Glauert and Lighthill's solution, local similarity, local nonsimilarity and difference-differential methods. Good agreement is found with all of them, except with the results of the local similarity and series solution methods.
Resumo:
The flow of a micropolar fluid in an orthogonal rheometer is considered. It is shown that an infinite number of exact solutions characterizing asymmetric motions are possible. The expressions for pressure in the fluid, the components of the forces and couples acting on the plates are obtained. The effect of microrotation on the flow is brought out by considering numerical results for the case of coaxially rotating disks.
Resumo:
The flow of an incompressible viscous fluid confined between two parallel infinite disks performing torsional oscillations with the same frequency, but rotating about different axes with different speeds has been studied. The solutions are presented for the symmetric and asymmetric first harmonic and steady streaming. The interesting features of the symmetric and asymmetric flow are discussed for the cases of small and large Womersley parameter at different ratios of the rotation speeds. The forces acting on one of the disks are also calculated.