98 resultados para FLATTENED TUBES
Resumo:
In the molecular structure of the title compound, C21H25NO4, the dihydropyridine ring adopts a flattened boat conformation while the cyclohexenone ring is in an envelope conformation. In the crystal structure, molecules are linked into a two-dimensional network parallel to (10 (1) over bar) by N-H center dot center dot center dot O and O-H center dot center dot center dot O hydrogen bonds. The network is generated by R-4(4)(30) and R-4(4)(34) graph-set motifs.
Resumo:
In the title compound, C18H21NO3, the 1,4-dihydropyridine ring exhibits a flattened boat conformation. The methoxyphenyl ring is nearly planar [r.m.s. deviation = 0.0723 (1) angstrom] and is perpendicular to the base of the boat [dihedral angle = 88.98 (4)degrees]. Intermolecular N-H center dot center dot center dot O and C-H center dot center dot center dot O hydrogen bonds exist in the crystal structure.
Resumo:
In the title compound, C19H21Cl2NO4, the dihydropyridine ring adopts a flattened boat conformation. The dichlorophenyl ring is oriented almost perpendicular to the planar part of the dihydropyridine ring [dihedral angle = 89.1 (1)degrees]. An intramolecular C-H center dot center dot center dot O hydrogen bond is observed. In the crystal structure, molecules are linked into chains along the b axis by N-H center dot center dot center dot O hydrogen bonds.
Resumo:
In this work, the mechanics of tubular hydroforming under various types of loading conditions is investigated. The main objective is to contrast the effects of prescribing fluid pressure or volume flow rate, in conjunction with axial displacement, on the stress and strain histories experienced by the tube and the process of bulging. To this end, axisymmetric finite element simulations of free hydroforming (without external die contact) of aluminium alloy tubes are carried out. Hill’s normally anisotropic yield theory along with material properties determined in a previous experimental study [A. Kulkarni, P. Biswas, R. Narasimhan, A. Luo, T. Stoughton, R. Mishra, A.K. Sachdev, An experimental and numerical study of necking initiation in aluminium alloy tubes during hydroforming, Int. J. Mech. Sci. 46 (2004) 1727–1746] are employed in the computations. It is found that while prescribed fluid pressure leads to highly non-proportional strain paths, specified fluid volume flow rate may result in almost proportional ones for the predominant portion of loading. The peak pressure increases with axial compression for the former, while the reverse trend applies under the latter. The implication of these results on failure by localized necking of the tube wall is addressed in a subsequent investigation.
Resumo:
Active regions on the solar surface are known to possess magnetic helicity, which is predominantly negative in the northern hemisphere and positive in the southern hemisphere. Choudhuri et al. [Choudhuri, A.R. On the connection between mean field dynamo theory and flux tubes. Solar Phys. 215, 31–55, 2003] proposed that the magnetic helicity arises due to the wrapping up of the poloidal field of the convection zone around rising flux tubes which form active regions. Choudhuri [Choudhuri, A.R., Chatterjee, P., Nandy, D. Helicity of solar active regions from a dynamo model. ApJ 615, L57–L60, 2004] used this idea to calculate magnetic helicity from their solar dynamo model. Apart from getting broad agreements with observational data, they also predict that the hemispheric helicity rule may be violated at the beginning of a solar cycle. Chatterjee et al. [Chatterjee, P., Choudhuri, A.R., Petrovay, K. Development of twist in an emerging magnetic flux tube by poloidal field accretion. A&A 449, 781–789, 2006] study the penetration of the wrapped poloidal field into the rising flux tube due to turbulent diffusion using a simple 1-d model. They find that the extent of penetration of the wrapped field will depend on how weak the magnetic field inside the rising flux tube becomes before its emergence. They conclude that more detailed observational data will throw light on the physical conditions of flux tubes just before their emergence to the photosphere.
Resumo:
The cyclically varying magnetic field of the Sun is believed to be produced by the hydromagnetic dynamo process. We first summarize the relevant observational data pertaining to sunspots and solar cycle. Then we review the basic principles of MHD needed to develop the dynamo theory. This is followed by a discussion how bipolar sunspots form due to magnetic buoyancy of flux tubes formed at the base of the solar convection zone. Following this, we come to the heart of dynamo theory. After summarizing the basic ideas of a turbulent dynamo and the basic principles of its mean field formulation, we present the famous dynamo wave solution, which was supposed to provide a model for the solar cycle. Finally we point out how a flux transport dynamo can circumvent some of the difficulties associated with the older dynamo models.
Resumo:
A two stage Pulse Tube Cryocooler (PTC) is designed and fabricated which reaches a no-load temperature of 2.5K in the second stage and similar to 60 K in the first stage respectively. The system provides a cooling power of similar to 250 mW at 5K in the second stage. Stainless steel meshes (size 200) and lead (Pb) granules are used as the first stage regenerator materials and combination of Pb with Er3Ni / HoCu2 are used as the second stage regenerator materials. The system operates at 1.6 Hz using a 6 kW water cooled helium compressor. Studies conducted by varying the dimensions of Pulse Tubes and regenerators show that the dimensions of the Pulse Tubes are more critical to the performance of the Cryocooler than those of the regenerators. Experimental studies show that the optimum volume ratios of Er3Ni to Pb and HoCu2 to Pb in the second stage regenerator should be 3:2 and 2:3 respectively for the best performance. Further, systems with HoCu2 performed better than those with Er3Ni. The theoretical analysis of the system has been carried out using a simple isothermal model. The experimentally measured cooling powers are in good agreement with the theoretical predictions.
Resumo:
The 1,4-dihydropyridine ring in the title hydrate, C17H18BrNO2 center dot H2O, has a flattened-boat conformation, and the benzene ring is occupies a position orthogonal to this [dihedral angle: 82.19 (16)degrees]. In the crystal packing, supramolecular arrays mediated by N-H center dot center dot center dot O-water and O-water-H center dot center dot center dot O-carbonyl hydrogen bonding are formed in the bc plane. A highly disordered solvent molecule is present within a molecular cavity defined by the organic and water molecules. Its contribution to the electron density was removed from the observed data in the final cycles of refinement and the formula, molecular weight and density are given without taking into account the contribution of the solvent molecule.
Resumo:
In-flight collection of air, pre-cooling, liquefaction and separation of liquid oxygen (LOX) are key technologies for futuristic launch vehicles, Vortex tube technology is one of the few potential technologies for this application. Extensive studies have been carried out on straight and conical vortex tubes for developing vortex tube technology for high purity LOX separation. Studies show that 12mm. diameter conical vortex tube with L/D of 10 could achieve LOX purity of similar to 96% with separation efficiency of similar to 14% indicating that it is not possible to obtain both high LOX purity and high separation efficiency simultaneously in a single vortex tube. However, it is possible to achieve both high LOX purity and separation efficiency by staging of vortex tubes. LOX purity of 96% and separation efficiency of similar to 73.5% has been achieved for second stage vortex tube supplied with pre-cooled air having 60% oxygen purity. LOX purity has been further increased to 97% by applying controlled heating power over liquid oxygen flowing discharge surface of the vortex tube.
Resumo:
Active Fiber Composites (AFC) possess desirable characteristics over a wide range of smart structure applications, such as vibration, shape and flow control as well as structural health monitoring. This type of material, capable of collocated actuation and sensing, call be used in smart structures with self-sensing circuits. This paper proposes four novel applications of AFC structures undergoing torsion: sensors and actuators shaped as strips and tubes; and concludes with a preliminary failure analysis. To enable this, a powerful mathematical technique, the Variational Asymptotic Method (VAM) was used to perform cross-sectional analyses of thin generally anisotropic AFC beams. The resulting closed form expressions have been utilized in the applications presented herein.
Resumo:
Flexible constraint length channel decoders are required for software defined radios. This paper presents a novel scalable scheme for realizing flexible constraint length Viterbi decoders on a de Bruijn interconnection network. Architectures for flexible decoders using the flattened butterfly and shuffle-exchange networks are also described. It is shown that these networks provide favourable substrates for realizing flexible convolutional decoders. Synthesis results for the three networks are provided and a comparison is performed. An architecture based on a 2D-mesh, which is a topology having a nominally lesser silicon area requirement, is also considered as a fourth point for comparison. It is found that of all the networks considered, the de Bruijn network offers the best tradeoff in terms of area versus throughput.
Resumo:
The problem of two-stream instability in plasma is studied by specifying the importance of initial magnetic field associated with the motion of the charged particles and the boundary effects. In Part I the accurate initial steady state is studied when the streams of electrons and ions move with different uniform speeds in plasmas with plane and cylindrical geometry. In Part II, in order to show the effects of finiteness and inhomogeneity of the system, small transverse plasma oscillations are studied in the case of plane plasmas. The role of plasma-sheath oscillations at the boundaries is found to be very important in driving the instabilities associated with the electromagnetic modes. The numerical estimates of the growth rates of the instability are given for the specific case of the physical data in discharge tubes.
Resumo:
Free convection heat transfer in vertical concentric, cylindrical annuli is investigated analytically and experimentally. The approximate double boundary layer model used by Emery and Chu for the case of vertical parallel plates is extended to the present case in obtaining heat transfer correlations in laminar free convection. Different correlations for the inner cylinder depending on the radius to the length ratio of the inner cylinder and the Rayleigh number, were used in the derivation of correlations for the annuli. The results for the case of short cylinders inside tubes are in agreement (within about 10 per cent) with the existing correlations. For other cases, namely long cylinders in annuli and wires in annuli, experiments conducted show the agreement of the analysis with experiments.
Resumo:
Details of the design and operation of a Weissenberg camera suitable for x-ray investigations between -180°c and 200°c are presented. The camera employs a novel arrangement of spur and bevel gears to couple the goniometer spindle to the worm rod which controls the range of oscillation. The entire drive system and the goniometer assembly are mounted on a support which permits the insertion or removal of a cylindrical cassette from the gear-box side without disturbing the cooling assembly and the layer-line screen. The cassette can also be inserted from the opposite side. The specimen can be cooled either directly by a stream of liquid air or by the cold gas from its evaporation. Condensation of moisture at low temperatures is prevented by heating the layer-line tubes internally.
Resumo:
In the structure of the title compound, C27H39N3O3, each of the (4-oxopiperidin-1-yl)methyl residues adopts a flattened chair conformation (with the N and carbonyl groups being oriented to either,side of the central C-4 plane) and they occupy positions approximatelym orthogonal to the central benzene ring [C-benzene-C-C-methylene-N torsion angles 103.4 (2), -104.4 (3) and 71.9 (3)degrees]; further, two of these residues are oriented to one side of the central benzene ring with the third to the other side. In the crystal packing, supramolecular layers in the ab plane are sustained by C-H center dotcenter dot center dot O interactions.