115 resultados para FISSION FRAGMENTS
Resumo:
P>Multicellular development in the social amoeba Dictyostelium discoideum is triggered by starvation. It involves a series of morphogenetic movements, among them being the rising of the spore mass to the tip of the stalk. The process requires precise coordination between two distinct cell types-presumptive (pre-) spore cells and presumptive (pre-) stalk cells. Trishanku (triA) is a gene expressed in prespore cells that is required for normal morphogenesis. The triA- mutant shows pleiotropic effects that include an inability of the spore mass to go all the way to the top. We have examined the cellular behavior required for the normal ascent of the spore mass. Grafting and mixing experiments carried out with tissue fragments and cells show that the upper cup, a tissue that derives from prestalk cells and anterior-like cells (ALCs), does not develop properly in a triA- background. A mutant upper cup is unable to lift the spore mass to the top of the fruiting body, likely due to defective intercellular adhesion. If wild-type upper cup function is provided by prestalk and ALCs, trishanku spores ascend all the way. Conversely, Ax2 spores fail to do so in chimeras in which the upper cup is largely made up of mutant cells. Besides proving that under these conditions the wild-type phenotype of the upper cup is necessary and sufficient for terminal morphogenesis in D. discoideum, this study provides novel insights into developmental and evolutionary aspects of morphogenesis in general. Genes that are active exclusively in one cell type can elicit behavior in a second cell type that enhances the reproductive fitness of the first cell type, thereby showing that morphogenesis is a cooperative process.
Resumo:
The benzylic methylene protons in a large number of benzyloxycarbonyl alpha-aminoisobutyric acid (Z-Aib) containing peptides, show chemical shift nonequivalence. The magnitude of the geminal nonequivalence is correlated with the involvement of the urethane carbonyl group, in an intramolecular hydrogen bond. Studies of the model compounds Z-Aib-Aib-Ala-NHMe, and Z-Aib-Aib-Aib-Pro-OMe clearly establish the presence of intramolecular hydrogen bonds, involving the urethane CO group. In both compounds marked anisochrony of the benzylic methylene protons is demonstrated. In Z-Aib-Aib-Pro-OMe, where a 4 leads to 1 hydrogen bonded beta-turn is not possible, the benzylic-CH2-protons appear as a singlet in CDCl3 and have a very small chemical shift difference in (CD3)2SO. The observation of such nonequivalence is of value in establishing whether the amino terminal Aib-Pro beta-turn is retained in large peptide-fragments of alamethicin.
Resumo:
We study a scheduling problem in a wireless network where vehicles are used as store-and-forward relays, a situation that might arise, for example, in practical rural communication networks. A fixed source node wants to transfer a file to a fixed destination node, located beyond its communication range. In the absence of any infrastructure connecting the two nodes, we consider the possibility of communication using vehicles passing by. Vehicles arrive at the source node at renewal instants and are known to travel towards the destination node with average speed v sampled from a given probability distribution. Th source node communicates data packets (or fragments) of the file to the destination node using these vehicles as relays. We assume that the vehicles communicate with the source node and the destination node only, and hence, every packet communication involves two hops. In this setup, we study the source node's sequential decision problem of transferring packets of the file to vehicles as they pass by, with the objective of minimizing delay in the network. We study both the finite file size case and the infinite file size case. In the finite file size case, we aim to minimize the expected file transfer delay, i.e. expected value of the maximum of the packet sojourn times. In the infinite file size case, we study the average packet delay minimization problem as well as the optimal tradeoff achievable between the average queueing delay at the source node buffer and the average transit delay in the relay vehicle.
Resumo:
This study presents a detailed description on crustal metamorphic signatures of garnet-clinopyroxene-quartz-rutile-bearing high P-T granulites, Samgot unit, Imajingang belt, northwestern Korean Peninsula that formed during Permo-Triassic regional metamorphism related to the amalgamation of East Asian continental fragments. Lenses and blocks of high P-T granulites and garnet-bearing leucosomes occur within mafic metamorphic rocks (mainly amphibolites). The mafic blocks comprise relicts of granoblastic garnet and clinopyroxene with medium-grained quartz and rutile. These relict mineral assemblages are confined to local micro-domains and constitute remnants of peak metamorphism. Plagioclase and amphibole form only as retrograde phases in medium ton coarse-grained moats that rim grain boundaries between relict peak mineral assemblages. This microstructure represents the reaction between garnet, clinopyroxene, quartz and rutile in the presence of melt to form amphibole, plagioclase and titanite with minor biotite. The leucosome domains consist of euhedral garnets within the quartz-K feldspar-plagioclase (granitic) matrix, probably representing peritectic garnet growth along with melting. The rare earth element (REE) composition of minerals also support the peritectic garnet growth with a positive Eu/Eu* (positive Eu anomaly), while the relict garnet shows a slight negative anomaly typical for high-grade granulites. The peak-metamorphic conditions calculated from thermodynamic modeling and compositional isopleths indicate a temperature around c. 900 degrees C at a pressure around c. 20 kbar. The present P-T path indicates a clear multi-stage decompression history with initial decompression and cooling followed by a stage of decompression during hydration possibly during Late Triassic exhumation. The results from this study together with the presence of eclogites from the Hongsung area suggest that the Imjingang area and the western Gyeonggi massif likely resided at crustal levels deeper than those of the eastern and southern part of the Gyeonggi massif. (C) 2009 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
The complete amino acid sequence of winged bean basic agglutinin (WBA I) was obtained by a combination of manual and gas-phase sequencing methods. Peptide fragments for sequence analyses were obtained by enzymatic cleavages using trypsin and Staphylococcus aureus V8 endoproteinase and by chemical cleavages using iodosobenzoic acid, hydroxylamine, and formic acid. COOH-terminal sequence analysis of WBA I and other peptides was performed using carboxypeptidase Y. The primary structure of WBA I was homologous to those of other legume lectins and more so to Erythrina corallodendron. Interestingly, the sequence shows remarkable identities in the regions involved in the association of the two monomers of E. corallodendron lectin. Other conserved regions are the double metal-binding site and residues contributing to the formation of the hydrophobic cavity and the carbohydrate-binding site. Chemical modification studies both in the presence and absence of N-acetylgalactosamine together with sequence analyses of tryptophan-containing tryptic peptides demonstrate that tryptophan 133 is involved in the binding of carbohydrate ligands by the lectin. The location of tryptophan 133 at the active center of WBA I for the first time subserves to explain a role for one of the most conserved residues in legume lectins.
Resumo:
Titration calorimetry measurements of the binding of methyl alpha-D-mannopyranoside (Me alpha Man), D-mannopyranoside (Man), methyl alpha-D-glucopyranoside (Me alpha Glu), and D-glucopyranoside (Glu) to concanavalin A (Con A), pea lectin, and lentil lectin were performed at 281 and 292 K in 0.01 M dimethylglutaric acid-NaOH buffer (pH 6.9) containing 0.15 M NaCl and Mn+2 and Ca+2 ions. The site binding enthalpies, delta H, are the same at both temperatures and range from -28.4 +/- 0.9 (Me alpha Man) to -16.6 +/- 0.5 kJ mol-1 (Glu) for Con A, from -26.2 +/- 1.1 (Me alpha Man) to -12.8 +/- 0.4 kJ mol-1 (Me alpha Glu) for pea lectin, and from -16.6 +/- 0.7 (Me alpha Man) to -8.0 +/- 0.2 kJ mol-1 (Me alpha Glu) for lentil lectin. The site binding constants range from 17 +/- 1 x 10(3) M-1 (Me alpha Man to Con A at 281.2 K) to 230 +/- 20 M-1 (Glu to lentil lectin at 292.6 K) and exhibit high specificity for Con A where they are in the Me alpha Man:Man:Me alpha Glu:Glu ratio of 21:4:5:1, while the corresponding ratio is 5:2:1.5:1 for pea lectin and 4:2:2:1 for lentil lectin. The higher specificity for Con A indicates more interactions between the amino acid residues at the binding site and the carbohydrate ligand than for the pea and lentil lectin-carbohydrate complexes. The carbohydrate-lectin binding results exhibit enthalpy-entropy compensation in that delta Hb (kJ mol-1) = -1.67 +/- 0.06 x 10(4) + (1.30 +/- 0.12)T(K) delta Sb (J mol-1K-1). Differential scanning calorimetry measurements on the thermal denaturation of the lectins and their carbohydrate complexes show that the Con A tetramer dissociates into monomers, while the pea and lentil lectin dimers dissociate into two submonomer fragments. At the denaturation temperature, one carbohydrate binds to each monomer of Con A and the pea and lentil lectins. Complexation with the carbohydrate increases the denaturation temperature of the lectin and the magnitude of the increases yield binding constants in agreement with the determinations from titration calorimetry.
Resumo:
In this paper we address the fundamental issue of temperature fluctuation during the thermal denaturation (or the unzipping of the two strands on heating) of double stranded (ds) DNA. From our experiments we observe the presence of extremely high thermal fluctuations during DNA denaturation. This thermal fluctuation is several orders higher than the thermal fluctuation at temperatures away from the denaturation temperature range. This fluctuation is absent in single stranded (ss) DNA. The magnitude of fluctuation is much higher in heteropolymeric DNA and is almost absent in short homopolymeric DNA fragments. The temperature range over which the denaturation occurs (i.e., over which the thermal fluctuation is large) depends on the length of the DNA and is largest for the longest DNA.
Resumo:
We have studied the nature of aromaticity in expanded porphyrinic analogues of thiophenes formed by four and six thiophenes. Using density functional theory (DFT) we have analyzed the aromaticity of both the macrocycle and individual molecular fragments. We find paramagnetic annulenic ring currents in the case of tetracyclic molecules and diamagnetic annulenic ring currents for hexacyclic molecules. We have also studied the effect of substitution of benzene rings within the macrocycle. We find that as the number of benzene rings is increased the aromaticity increases for tetracyclic systems and decreases for hexacyclic systems. All the results have been analyzed with various microscopic parameters, including geometry, excitation gap, and NMR criteria.
Resumo:
Precipitation involving mixing of two sets of reverse micellar solutions-containing a reactant and precipitant respectively-has been analyzed. Particle formation in such systems has been simulated by a Monte Carlo (MC) scheme (Li, Y.; Park, C. W. Langmuir 1999, 15, 952), which however is very restrictive in its approach. We have simulated particle formation by developing a general Monte Carlo scheme, using the interval of quiescence technique (IQ). It uses Poisson distribution with realistic, low micellar occupancies of reactants, Brownian collision of micelles with coalescence efficiency, fission of dimers with binomial redispersion of solutes, finite nucleation rate of particles with critical number of molecules, and instantaneous particle growth. With the incorporation of these features, the previous work becomes a special case of our simulation. The present scheme was then used to predict experimental data on two systems. The first is the experimental results of Lianos and Thomas (Chem. Phys. Lett. 1986, 125, 299, J. Colloid Interface Sci. 1987, 117, 505) on formation of CdS nanoparticles. They reported the number of molecules in a particle as a function of micellar size and reactant concentrations, which have been predicted very well. The second is on the formation of Fe(OH)(3) nanoparticles, reported by Li and Park. Our simulation in this case provides a better prediction of the experimental particle size range than the prediction of the authors. The present simulation scheme is general and can be applied to explain nanoparticle formation in other systems.
Resumo:
Current design models and frameworks describe various overlapping fragments of designing. However, little effort exists in consolidating these fragments into an integrated model. We propose a model of designing that integrates product and process facets of designing by combining activities, outcomes, requirements, and solutions. Validation of the model using video protocols of design sessions demonstrates that all the constructs are used naturally by designers but often not to the expected level, which hinders the variety and resulting novelty of the concepts developed in these sessions. To resolve this, a prescriptive framework for supporting design for variety and novelty is proposed and plans for its implementation are created. DOI: 10.1115/1.3467011]
Resumo:
The modularity of the supramolecular synthon is used to obtain transferability of charge density derived multipolar parameters for structural fragments, thus creating an opportunity to derive charge density maps for new compounds. On the basis of high resolution X-ray diffraction data obtained at 100 K for three compounds methoxybenzoic acid, acetanilide, and 4-methyl-benzoic acid, multipole parameters for O-H center dot center dot center dot O carboxylic acid dimer and N-H center dot center dot center dot O amide infinite chain synthon fragments have been derived. The robustness associated with these supramolecular synthons has been used to model charge density derived multipolar parameters for 4-(acetylamino)benzoic acid and 4-methylacetanilide. The study provides pointers to the design and fabrication of a synthon library of high resolution X-ray diffraction data sets. It has been demonstrated that the derived charge density features can be exploited in both intra- and intermolecular space for any organic compound based on transferability of multipole parameters. The supramolecular synthon based fragments approach (SBFA) has been compared with experimental charge density data to check the reliability of use of this methodology for transferring charge density derived multipole parameters.
Resumo:
Heat shock protein 90 participates in diverse biological processes ranging from protein folding, cell cycle, signal transduction and development to evolution in all eukaryotes. It is also critically involved in regulating growth of protozoa such as Dictyostelium discoideum, Leishmania donovani, Plasmodium falciparum, Trypanosoma cruzi, and Trypanosoma evansi. Selective inhibition of Hsp90 has also been explored as an intervention strategy against important human diseases such as cancer, malaria, or trypanosomiasis. Giardia lamblia, a simple protozoan parasite of humans and animals, is an important cause of diarrheal disease with significant morbidity and some mortality in tropical countries. Here we show that the G. lamblia cytosolic hsp90 ( glhsp90) is split in two similar sized fragments located 777 kb apart on the same scaffold. Intrigued by this unique arrangement, which appears to be specific for the Giardiinae, we have investigated the biosynthesis of GlHsp90. We used genome sequencing to confirm the split nature of the giardial hsp90. However, a specific antibody raised against the peptide detected a product with a mass of about 80 kDa, suggesting a post-transcriptional rescue of the genomic defect. We show evidence for the joining of the two independent Hsp90 transcripts in-trans to one long mature mRNA presumably by RNA splicing. The splicing junction carries hallmarks of classical cis-spliced introns, suggesting that the regular cis-splicing machinery may be sufficient for repair of the open reading frame. A complementary 26-nt sequence in the ``intron'' regions adjacent to the splice sites may assist in positioning the two pre-mRNAs for processing. This is the first example of post-transcriptional rescue of a split gene by trans-splicing.
Resumo:
Spermatidal transition protein, TP2, was purified from rat testes by Hg-affinity chromatography. The present study reports the details of the zinc-metalloprotein nature of TP2 by employing the Zn-65-blotting technique. Chemical modification of cysteine by iodoacetic acid, and histidine by diethylpyrocarbonate, resulted in a near complete inhibition of Zn-65-binding to TP2. The (65)Zinc-binding was localized to the V8 protease-derived N-terminal two-third polypeptide fragment. Circular dichroism spectroscopy studies of TP2 (zinc pre-incubated) and its V8 protease-derived polypeptide fragments revealed that the N-terminal fragment has a Type I-beta-turn spectrum, while the C-terminal fragment has a small but significant alpha-helical structure. EDTA altered the circular dichroism spectrum of TP2 and the N-terminal fragment (zinc binding domain) but not that of the C-terminal fragment.
Resumo:
The Baeyer-Villiger reaction of 2-(2-oxocyclohexyl) acetic acid occurs via a bicyclic Criegee intermediate, which fragments with stereoelectronic control, as evidenced by product analysis; the reaction of the but-2-yl ester and of 2-(2-oxocyclopentyl) acetic acid also show evidence of such stereoelectronic control, but less convincingly.
Resumo:
We show that uracil DNA glycosylase from E. coli excises uracil residues from the ends of double stranded oligos. This information has allowed us to develop an efficient method of cloning PCR amplified DNA. In this report, we describe use of this method in cloning of E. coli genes for lysyl- and methionyl-tRNA synthetases. Efficiency of cloning by this method was found to be the same as that of subcloning of DNA restriction fragments from one vector to the other vector. Possibilities of using other DNA glycosylases for such applications are discussed.