49 resultados para Exponential growth
Resumo:
Abstract is not available.
Resumo:
The control of shapes of nanocrystals is crucial for using them as building blocks for various applications. In this paper, we present a critical overview of the issues involved in shape-controlled synthesis of nanostructures. In particular, we focus on the mechanisms by which anisotropic structures of high-symmetry materials (fcc crystals, for instance) could be realized. Such structures require a symmetry-breaking mechanism to be operative that typically leads to selection of one of the facets/directions for growth over all the other symmetry-equivalent crystallographic facets. We show how this selection could arise for the growth of one-dimensional structures leading to ultrafine metal nanowires and for the case of two-dimensional nanostructures where the layer-by-layer growth takes place at low driving forces leading to plate-shaped structures. We illustrate morphology diagrams to predict the formation of two-dimensional structures during wet chemical synthesis. We show the generality of the method by extending it to predict the growth of plate-shaped inorganics produced by a precipitation reaction. Finally, we present the growth of crystals under high driving forces that can lead to the formation of porous structures with large surface areas.
Resumo:
Improved sufficient conditions are derived for the exponential stability of a nonlinear time varying feedback system having a time invariant blockG in the forward path and a nonlinear time varying gain ϕ(.)k(t) in the feedback path. φ(.) being an odd monotone nondecreasing function. The resulting bound on is less restrictive than earlier criteria.
Resumo:
Improved sufficient conditions are derived for the exponential stability of a nonlinear time varying feedback system having a time invariant blockG in the forward path and a nonlinear time varying gain ϕ(.)k(t) in the feedback path. φ(.) being an odd monotone nondecreasing function. The resulting bound on $$\left( {{{\frac{{dk}}{{dt}}} \mathord{\left/ {\vphantom {{\frac{{dk}}{{dt}}} k}} \right. \kern-\nulldelimiterspace} k}} \right)$$ is less restrictive than earlier criteria.