101 resultados para Exciton-binding energy
Resumo:
Using all atomistic molecular dynamics (MD) simulations we report a microscopic picture of the carbon nanotube (6,5)-dendrimer complex for PAMAM dendrimers of generations 2 to 4. We study the compact wrapping conformations of the dendrimer onto the nanotube surface for all the three generations of PAMAM dendrimer. A high degree of wrapping for the non-protonated dendrimer is observed as compared to the protonated dendrimer. For comparison, we also study the interaction of another dendrimer, poly(propyl ether imine) (PETIM), with the nanotube. The results of the distance of closest approach as well as the number of close contacts between the nanotube and the dendrimer reveal that the PAMAM dendrimer interacts strongly as compared to the PETIM dendrimer. We also calculate the binding energy between the nanotube and the dendrimer using MM/PBSA methods and attribute the strong binding to the charge transfer between them. Dendrimer wrapping on the CNT will make it soluble and the dendrimer can act as an efficient dispersing agent for the nanotubes.
Resumo:
Mn doping in ZnS nanoplatelets has been shown to induce a structural transition from the wurtzite to the zinc blende phase. We trace the origin of this transition to quantum confinement effects, which shift the valence band maximum of the wurtzite and zinc blende polyrnorphs of ZnS at different rates as a function of the nanocrystal size, arising from different effective hole masses in the two structures. This modifies the covalency associated with Mn incorporation and is reflected in the size-dependent binding energy difference for the two structures.
Resumo:
A comprehensive study of D-Na center dot center dot center dot A (D = H/F) complexes has been done using advanced ab initio and atoms in molecule (AIM) theoretical analyses. The correlation between electron density at bond critical point and binding energy gives a distinguishing feature for hydrogen bonding, different from the `electrostatic complexes' formed by LiD and NaD. Moreover, the LiD/NaD dimers have both linear and anti-parallel minima, as expected for electrostatic dipole-dipole interactions. The HF dimer has a quasi-linear minimum and the anti-parallel structure is a saddle point. Clearly, characterizing hydrogen bonding as `nothing but electrostatic interaction between two dipoles' is grossly in error.
Resumo:
Results of a high resolution photoemission and electrochemistry study of Se adsorption Au(111) and Ag(111) surfaces performed by immersion of pristine samples into an aqeuous solution of Na2Se are presented. Cyclic voltammetry on Au shows formation of selenium adsorbed species and the structures observed in reductive desorption are to the atomic and polymeric species observed in XPS. In the case of Au(111) XPS spectra in the Se(3d) region indeed show two main features attributed to Se chemisorbed atomically and polymeric Se-8 features.' Smaller structures due to other types of Se conformations were also observed. The Au(4f) peak line, shape does not show core level, shifts: indicative of Au selenide formation the case of silver, XPS spectra for the Ag(3d) show a broadening of the peak and a deconvolution into Ag-B bulk like Ag-Se components shows that the Ag-Se is located at a lower binding energy, an effect similar to oxidation and sulfidation of Ag. The Se(3d) XPS spectrum is found to be substantially different from the Au case and dominated by atomic type Se due to the selenide, though a smaller intensity Se structure at an energy similar to the Se-8 structure for Au is also observed. Changes in the valence band region. related to Se adsorption are reported.
Resumo:
We investigate the effect of nitrogen and boron doping on Li diffusion through defected graphene using first principles based density functional theory. While a high energy barrier rules out the possibility of Li-diffusion through the pristine graphene, the barrier reduces with the incorporation of defects. Among the most common defects in pristine graphene, Li diffusion through the divacancy encounters the lowest energy barrier of 1.34 eV. The effect of nitrogen and boron doping on the Li diffusion through doped defected-graphene sheets has been studied. N-doping in graphene with a monovacancy reduces the energy barrier significantly. The barrier reduces with the increasing number of N atoms. On the other hand, for N doped graphene with a divacancy, Li binds in the plane of the sheet, with an enhanced binding energy. The B doping in graphene with a monovacancy leads to the enhancement of the barrier. However, in the case of B-doped graphene with a divacancy, the barrier reduces to 1.54 eV, which could lead to good kinetics. The barriers do not change significantly with B concentration. Therefore, divacancy, B and N doped defected graphene has emerged as a better alternative to pristine graphene as an anode material for Li ion battery.
Resumo:
Hydrogen bonded complexes formed between the square pyramidal Fe(CO)(5) with HX (X = F, Cl, Br), showing X-H center dot center dot center dot Fe interactions, have been investigated theoretically using density functional theory (DFT) including dispersion correction. Geometry, interaction energy, and large red shift of about 400 cm(-1) in the FIX stretching frequency confirm X-H center dot center dot center dot Fe hydrogen bond formation. In the (CO)(5)Fe center dot center dot center dot HBr complex, following the significant red shift, the HBr stretching mode is coupled with the carbonyl stretching modes. This clearly affects the correlation between frequency shift and binding energy, which is a hallmark of hydrogen bonds. Atoms in Molecule (AIM) theoretical analyses show the presence of a bond critical point between the iron and the hydrogen of FIX and significant mutual penetration. These X-H center dot center dot center dot Fe hydrogen bonds follow most but not all of the eight criteria proposed by Koch and Popelier (J. Phys. Chem. 1995, 99, 9747) based on their investigations on C-H center dot center dot center dot O hydrogen bonds. Natural bond orbital (NBO) analysis indicates charge transfer from the organometallic system to the hydrogen bond donor. However, there is no correlation between the extent of charge transfer and interaction,energy, contrary to what is proposed in the recent IUPAC recommendation (Pure Appl.. Chem. 2011, 83, 1637). The ``hydrogen bond radius'' for iron has been determined to be 1.60 +/- 0.02 angstrom, and not surprisingly it is between the covalent (127 angstrom) and van der Waals (2.0) radii of Fe. DFT and AIM theoretical studies reveal that Fe in square pyramidal Fe(CO)(5) can also form halogen bond with CIF and ClH as ``halogen bond donor''. Both these complexes show mutual penetration as well, though the Fe center dot center dot center dot Cl distance is closer to the sum of van der Waals radii of Fe and Cl in (CO)5Fe center dot center dot center dot ClH, and it is about 1 angstrom less in (CO)(5)Fe center dot center dot center dot ClF.
Resumo:
In the present study, we report the synthesis, characterization of new series of thiazolo3,2-a]pyrimidine-6-carboxylate derivatives 3a-f and 4a-f. The newly synthesized compounds were screened for in vitro antimicrobial and antiviral activities. The probable mode of action of these active compounds was determined through in silico docking study by docking the receptor methionyl-tRNA synthetase and human inosine-5'-monophosphate dehydrogenase (IMPDH) for antibacterial and antiviral activities, respectively. Among the compounds, 4c exhibited excellent in vitro antimicrobial activity against all tested strains with binding and docking energies -35.6 and -12.4 kcal/mol, respectively. The antiviral studies were carried out for the selected compounds in which 4a exhibited 73.69 and 54.42 % of inhibition of buffalopox and camelpox viruses, respectively. Furthermore, compound 4a showed minimum docking and binding energy along with the maximum hydrogen/hydrophobic interaction with IMPDH. The study contributes towards identification and screening of potential antimicrobial and antiviral agent's against the pathogens.
Resumo:
The electronic structures of Nd1-xYxMnO3 (x=0-0.5) were studied using X-ray absorption near-edge structure (XANES) at the Mn L-3,L-2- and O K-edge along with valence-band photoemission spectroscopy (VB-PES). The systematic increase in white-line intensity of the Mn L-3,L-2-edge with doping, suggests a decrease in the occupancy of Mn 3d orbitals. The O K-edge XANES shows a depletion of unoccupied states above the Fermi energy. The changes in the O K-edge spectra due to doping reflects an increase in the Jahn-Teller distortion. The VB-PES shows broadening of the features associated with Mn 3d and O 2p hybridized states and the shift of these features to a slightly higher binding energy in agreement with our GGA + U calculations. The system shows a net shift of the occupied and unoccupied states away from the Fermi energy with doping. The shift in theoretical site-projected density of states of x=0.5 composition with respect to x=0 suggest a subtle change from a charge transfer to Mott-Hubbard type insulator. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Using van-der-Waals-corrected density functional theory calculations, we explore the possibility of engineering the local structure and morphology of high-surface-area graphene-derived materials to improve the uptake of methane and carbon dioxide for gas storage and sensing. We test the sensitivity of the gas adsorption energy to the introduction of native point defects, curvature, and the application of strain. The binding energy at topological point defect sites is inversely correlated with the number of missing carbon atoms, causing Stone-Wales defects to show the largest enhancement with respect to pristine graphene (similar to 20%). Improvements of similar magnitude are observed at concavely curved surfaces in buckled graphene sheets under compressive strain, whereas tensile strain tends to weaken gas binding. Trends for CO2 and CH4 are, similar, although CO2 binding is generally stronger by similar to 4 to 5 kJ mol(-1). However, the differential between the adsorption of CO2 and CH4 is much higher on folded graphene sheets and at concave curvatures; this could possibly be leveraged for CH4/CO2 flow separation and gasselective sensors.
Resumo:
A combination of measurements using photoelectron spectroscopy and calculations using density functional theory (DFT) was applied to compare the detailed electronic structure of the organolead halide perovskites CH3NH3PbI3 and CH3NH3PbBr3. These perovskite materials are used to absorb light in mesoscopic and planar heterojunction solar cells. The Pb 4f core level is investigated to get insight into the chemistry of the two materials. Valence level measurments are also included showing a shift of the valence band edges where there is a higher binding energy of the edge for the CH3NH3PbBr3 perovskite. These changes are supported by the theoretical calculations which indicate that the differences in electronic structure are mainly caused by the nature of the halide ion rather than structural differences. The combination of photoelectron spectroscopy measurements and electronic structure calculations is essential to disentangle how the valence band edge in organolead halide perovskites is governed by the intrinsic difference in energy levels of the halide ions from the influence of chemical bonding.
Resumo:
Using Generalized Gradient Approximation (GGA) and meta-GGA density functional methods, structures, binding energies and harmonic vibrational frequencies for the clusters O-4(+), O-6(+), O-8(+) and O-10(+) have been calculated. The stable structures of O-4(+), O-6(+), O-8(+) and O-10(+) have point groups D-2h, D-3h, D-4h, and D-5h optimized on the quartet, sextet, octet and dectet potential energy surfaces, respectively. Rectangular (D-2h) O-4(+) has been found to be more stable compared to trans-planar (C-2h) on the quartet potential energy surface. Cyclic structure (D-3h) of CA cluster ion has been calculated to be more stable than other structures. Binding energy (B.E.) of the cyclic O-6(+) is in good agreement with experimental measurement. The zero-point corrected B.E. of O-8(+) with D4h symmetry on the octet potential energy surface and zero-point corrected B.E. of O-10(+) with D-5h symmetry on the dectet potential energy surface are also in good agreement with experimental values. The B.E. value for O-4(+) is close to the experimental value when single point energy is calculated by Brueckner coupled-cluster method, BD(T). (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Using all-atom molecular dynamics (MD) simulations, we have studied the mechanical properties of ZnS/CdS core/shell nanowires. Our results show that the coating of a few-atomic-layer CdS shell on the ZnS nanowire leads to a significant change in the stiffness of the core/shell nanowires compared to the stiffness of pure ZnS nanowires. The binding energy between the core and shell region decreases due to the lattice mismatch at the core-shell interface. This reduction in binding energy plays an important role in determining the stiffness of a core/shell nanowire. We have also investigated the effects of the shell on the thermal conductivity and melting behavior of the nanowires.
Resumo:
We investigated the nature of the cohesive energy between graphane sheets via multiple CH center dot center dot center dot HC interactions, using density functional theory (DFT) including dispersion correction (Grimmes D3 approach) computations of n]graphane sigma dimers (n = 6-73). For comparison, we also evaluated the binding between graphene sheets that display prototypical pi/pi interactions. The results were analyzed using the block-localized wave function (BLW) method, which is a variant of ab initio valence bond (VB) theory. BLW interprets the intermolecular interactions in terms of frozen interaction energy (Delta E-F) composed of electrostatic and Pauli repulsion interactions, polarization (Delta E-pol), charge-transfer interaction (Delta E-CT), and dispersion effects (Delta E-disp). The BLW analysis reveals that the cohesive energy between graphane sheets is dominated by two stabilizing effects, namely intermolecular London dispersion and two-way charge transfer energy due to the sigma CH -> sigma*(HC) interactions. The shift of the electron density around the nonpolar covalent C-H bonds involved in the intermolecular interaction decreases the C-H bond lengths uniformly by 0.001 angstrom. The Delta E-CT term, which accounts for similar to 15% of the total binding energy, results in the accumulation of electron density in the interface area between two layers. This accumulated electron density thus acts as an electronic glue for the graphane layers and constitutes an important driving force in the self-association and stability of graphane under ambient conditions. Similarly, the double faced adhesive tape style of charge transfer interactions was also observed among graphene sheets in which it accounts for similar to 18% of the total binding energy. The binding energy between graphane sheets is additive and can be expressed as a sum of CH center dot center dot center dot HC interactions, or as a function of the number of C-H bonds.
Resumo:
The challenge in the electrosynthesis of fuels from CO2 is to achieve durable and active performance with cost-effective catalysts. Here, we report that carbon nanotubes (CNTs), doped with nitrogen to form resident electron-rich defects, can act as highly efficient and, more importantly, stable catalysts for the conversion of CO2 to CO. The unprecedented overpotential (-0.18 V) and selectivity (80%) observed on nitrogen-doped CNTs (NCNTs) are attributed to their unique features to facilitate the reaction, including (i) high electrical conductivity, (ii) preferable catalytic sites (pyridinic N defects), and (iii) low free energy for CO2 activation and high barrier for hydrogen evolution. Indeed, DFT calculations show a low free energy barrier for the potential-limiting step to form key intermediate COOH as well as strong binding energy of adsorbed CON and weak binding energy for the adsorbed CO. The highest selective site toward CO production is pyridinic N, and the NCNT-based electrodes exhibit no degradation over 10 h of continuous operation, suggesting the structural stability of the electrode.
Resumo:
We present a framework for obtaining reliable solid-state charge and optical excitations and spectra from optimally tuned range-separated hybrid density functional theory. The approach, which is fully couched within the formal framework of generalized Kohn-Sham theory, allows for the accurate prediction of exciton binding energies. We demonstrate our approach through first principles calculations of one- and two-particle excitations in pentacene, a molecular semiconducting crystal, where our work is in excellent agreement with experiments and prior computations. We further show that with one adjustable parameter, set to produce the known band gap, this method accurately predicts band structures and optical spectra of silicon and lithium fluoride, prototypical covalent and ionic solids. Our findings indicate that for a broad range of extended bulk systems, this method may provide a computationally inexpensive alternative to many-body perturbation theory, opening the door to studies of materials of increasing size and complexity.