68 resultados para Evaluating a Cuisine: Six Criteria
Resumo:
A minimum weight design of laminated composite structures is carried out for different loading conditions and failure criteria using genetic algorithm. The phenomenological maximum stress (MS) and Tsai-Wu (TW) criteria and the micro-mechanism-based failure mechanism based (FMB) failure criteria are considered. A new failure envelope called the Most Conservative Failure Envelope (MCFE) is proposed by combining the three failure envelopes based on the lowest absolute values of the strengths predicted. The effect of shear loading on the MCFE is investigated. The interaction between the loading conditions, failure criteria, and strength-based optimal design is brought out.
Resumo:
Helix helix interactions are fundamental to many biological signals and systems and are found in homo- or heteromultimerization of signaling molecules as well as in the process of virus entry into the host. In HIV, virus-host membrane fusion during infection is mediated by the formation of six-helix bundles (6HBs) from homotrimers of gp41, from which a number of synthetic peptides have been derived as antagonists of virus entry. Using a yeast surface two-hybrid (YS2H) system, a platform designed to detect protein-protein interactions occurring through a secretory pathway, we reconstituted 6HB complexes on the yeast surface, quantitatively measured the equilibrium and kinetic constants of soluble 6HB, and delineated the residues influencing homo-oligomeric and hetero-oligomeric coiled-coil interactions. Hence, we present YS2H as a platform for the facile characterization and design of antagonistic peptides for inhibition of HIV and many other enveloped viruses relying on membrane fusion for infection, as well as cellular signaling events triggered by hetero-oligomeric coiled coils.
Resumo:
Isolated magnetic nanowires have been studied extensively and the magnetization reversal mechanism is well understood in these systems. But when these nanowires are joined together in different architectures, they behave differently and can give novel properties. Using this approach, one can engineer the network architectures to get artificial anisotropy. Here, we report six-fold anisotropy by joining the magnetic nanowires into hexagonal network. For this study, we also benchmark the widely used micromagnetic packages: OOMMF, Nmag, and LLG-simulator. Further, we propose a local hysteresis method by post processing the spatial magnetization information. With this approach we obtained the hysteresis of nanowires to understand the six-fold anisotropy and the reversal mechanism within the hexagonal networks.
Resumo:
We report thermally induced instability leading to catastrophic breakup in acoustically levitated vaporizing fuel droplets. Change in surface tension and viscosity with increase in droplet temperature causes wide fluctuations in droplet aspect ratio. If the viscous damping of aspect ratio oscillation is not strong enough, the droplet goes through unbounded stretching. If the droplet exceeds a critical Weber number locally, a bag type and capillary wave induced atomization can occur, which leads to catastrophic breakup. A stability criterion has been established based on the inhomogeneity of Bernoulli (acoustic) pressure and surface tension of the droplet in terms of a local Weber number and Ohnesorge number. This instability is thermally induced in a droplet which does not experience instabilities without heating. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Faraday-type electromagnetic flow meters are employed for measuring the flow rate of liquid sodium in fast breeder reactors. The calibration of such flow meters, owing to the required elaborative arrangements is rather difficult. On the other hand, theoretical approach requires solution of two coupled electromagnetic partial differential equation with profile of the flow and applied magnetic field as the inputs. This is also quite involved due to the 3D nature of the problem. Alternatively, Galerkin finite element method based numerical solution is suggested in the literature as an attractive option for the required calibration. Based on the same, a computer code in Matlab platform has been developed in this work with both 20 and 27 node brick elements. The boundary conditions are correctly defined and several intermediate validation exercises are carried out. Finally it is shown that the sensitivities predicted by the code for flow meters of four different dimensions agrees well with the results given by analytical expression, thereby providing strong validation. Sensitivity for higher flow rates, for which analytical approach does not exist, is shown to decrease with increase in flow velocity.
Resumo:
We address the problem of speech enhancement using a risk- estimation approach. In particular, we propose the use the Stein’s unbiased risk estimator (SURE) for solving the problem. The need for a suitable finite-sample risk estimator arises because the actual risks invariably depend on the unknown ground truth. We consider the popular mean-squared error (MSE) criterion first, and then compare it against the perceptually-motivated Itakura-Saito (IS) distortion, by deriving unbiased estimators of the corresponding risks. We use a generalized SURE (GSURE) development, recently proposed by Eldar for MSE. We consider dependent observation models from the exponential family with an additive noise model,and derive an unbiased estimator for the risk corresponding to the IS distortion, which is non-quadratic. This serves to address the speech enhancement problem in a more general setting. Experimental results illustrate that the IS metric is efficient in suppressing musical noise, which affects the MSE-enhanced speech. However, in terms of global signal-to-noise ratio (SNR), the minimum MSE solution gives better results.
Resumo:
Guanidine derived six-membered C,N] palladacycles of the types (C,N)Pd(mu-OC(O)R)](2) (1a-d), (C,N)Pd(mu-Br)](2) (2a,b), cis-(C,N)PdBr(L)] (3a-d, 4, and 5), and ring contracted guanidine derived five-membered C,N] palladacycle, (C,N)PdBr(C NXy)] (6) were prepared in high yield following the established methods with a view aimed at understanding the influence of the substituents on the aryl rings of the guanidine upon the solid state structure and solution behaviour of palladacycles. Palladacycles were characterised by microanalytical, IR, NMR and mass spectral data. The molecular structures of 1a, 1c, 2a, 2b, 3a, 3c, 3d, and 4-6 were determined by single crystal X-ray diffraction data. Palladacycles 1a and 1c were shown to exist as a dimer in transoid in-in conformation in the solid state but as a mixture of a dimer in major proportion and a monomer (kappa(2)-O,O'-OAc) in solution as deduced from H-1 NMR data. Palladacycles 2a and 2b were shown to exist as a dimer in transoid conformation in the solid state but the former was shown to exist as a mixture of a dimer and presumably a trimer in solution as revealed by a variable temperature H-1 NMR data in conjunction with ESI-MS data. The cis configuration around the palladium atom in 3a, 3c, and 3d was ascribed to steric influence of the aryl moiety of =NAr unit and that in 4-6 was ascribed to antisymbiosis. The solution behaviour of 3d was studied by a variable concentration (VC) H-1 NMR data.
Resumo:
Six-membered C,N] cyclopalladated sym N,N',N `'-tri(4-tolyl)guanidines, (ArNH)(2)C=NAr] (sym = symmetrical; Ar = 4-MeC6H4; LH24-tolyl) of the types (C,N)Pd(mu-OC(O)R)](2) (1 and 2), (C,N)Pd(mu-Br)](2) (3), cis-(C,N)PdLBr] (4-7), and (C,N)Pd(acac)] (8) were prepared in high yield by established methods with a view aimed at understanding the influence of the 4-tolyl substituent of the guanidine moiety upon the solution behaviour of 1-8. The composition of 1-8 was confirmed by elemental analysis, IR, and NMR spectroscopy, and mass spectrometry. The molecular structures of 1-6 were determined by single-crystal X-ray diffraction. Palladacycles 1-3 exist as a dimer in transoid conformation in the solid state while 4-6 exist as a monomer with cis configuration around the palladium atom as the Lewis base is placed cis to the Pd-C bond due to antisymbiosis. The NMR spectra of 1-8 revealed the presence of a single isomer in solution and this spectral feature is ascribed to the rapid inversion of the six-membered ``C,N]Pd'' ring due to the presence of sterically less hindered and more symmetrical 4-tolyl substituent in the =NAr unit of the guanidine moiety. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
A supply chain ecosystem consists of the elements of the supply chain and the entities that influence the goods, information and financial flows through the supply chain. These influences come through government regulations, human, financial and natural resources, logistics infrastructure and management, etc., and thus affect the supply chain performance. Similarly, all the ecosystem elements also contribute to the risk. The aim of this paper is to identify both performances-based and risk-based decision criteria, which are important and critical to the supply chain. A two step approach using fuzzy AHP and fuzzy technique for order of preference by similarity to ideal solution has been proposed for multi-criteria decision-making and illustrated using a numerical example. The first step does the selection without considering risks and then in the next step suppliers are ranked according to their risk profiles. Later, the two ranks are consolidated into one. In subsequent section, the method is also extended for multi-tier supplier selection. In short, we are presenting a method for the design of a resilient supply chain, in this paper.
Resumo:
The reaction of Pd{kappa(2)(C,N)-C6H3Me-3-(NHC(NHAr)(=NAr))-2}(mu-Br)](2) (Ar = 2-MeC6H4; 1) with 4 equiv of PhC C-C(O)OMe in CH2Cl2 afforded Pd{kappa(2)(C,N)-C(Ph)=C(C(O)OMe)C(Ph)=C(C(O)-OMe)C6H3Me-3(N=C(NH Ar)(2))-2}Br] (Ar = 2-MeC6H4; 2) in 70% yield, and the aforementioned reaction carried out with 10 equiv of PhC C-C(O)OR (R = Me, and Et) afforded an admixture of two regioisomers of Pd{kappa(3)(N,C,O)-O=C(OR)-C5Ph3(C(O)OR)C(C(O)OR)C6H3Me-3(N=C(NHAr)( 2))- 2}Br] (Ar = 2-MeC6H4; R = Me (3a/3b), Et (4a/4b)) in 80 and 87% yields, respectively. In one attempt, the minor regioisomer, 4b, was isolated from the mixture in 6% yield by fractional crystallization. Palladacycles 3a/3b and 4a/4b, upon stirring in CH2Cl2/MeCN (1/1, v/v) mixture at ambient condition for S days, afforded Pd{eta(3)-allyl,(KN)-N-1)-C-5(C(O)OR)(2)Ph3C-(C(O)OR)C6H3Me-3(N=C(NH Ar)(2))(-2)}Br] (Ar = 2-MeC6H4; R = Me (5a/5b), Et (6a/6b)) in 94 and 93% yields, respectively. Palladacycles 3a/3b and 4a/4b, upon reaction with AgOTf in CH2CH2/Me2C(O) (1/1, v/v) mixture at ambient temperature for 15 min, afforded Pd{kappa(3)(N,C,O)-O=C(OR)C5Ph3(C(O)OR)C(C(O)OR)C6H3Me-3(N=C(NHAr)(2 ))-2}(OTf)] (Ar = 2-MeC6H4; R = Me (7a/7b), Et (8a/8b)) in 79 and 77% yields, respectively. Palladacycles 7a/7b and 8a/ 8b, upon reflux in PhC1 separately for 6 h, or palladacycles 5a/5b and 6a/6b, upon treatment with AgOTf in CH2Cl2/Me2C(O) (7/3, v/v) mixture for 15 min, afforded Pd{(eta(2)-Ph)C5Ph2(C(O)OR)kappa(2)(C,N)-C(C(O)OR)C6H3Me-3(N=C(NHAr) (2))-2}(OTf)] (Ar = 2-MeC6H4; R = Me (9a/9h), Et (10a/10b)) in >= 87% yields. Palladacycles 9a/9b, upon stirring in MeCN in the presence of excess NaOAc followed by crystallization of the reaction mixture in the same solvent, afforded Pd{kappa(3)(N,C,C)-(C6H4)C5Ph2(C(O)OMe)(2)C(C(O)OMe)(2)C6H3Me-3(N=C( NHAr)(2))-2}(NCMe)] (Ar = 2-MeC6H4; 11a/11b) in 82% yield. The new palladacycles were characterized by analytical, IR, and NMR (H-1 and C-13) spectroscopic techniques, and the molecular structures of 2, 3a, 4a, 4b, 5a, 6a, 7a, 9a, 10a, and 11a-d(3) were determined by single crystal X-ray diffraction. The frameworks in the aforementioned palladacycles, except that present in 2, are unprecedented. Plausible pathways for the formation of new palladacycles and the influence of the guanidine unit in 1, substituents in alkynes, reaction conditions, and electrophilicity of the bromide and the triflate upon the frameworks of the insertion products have been discussed.
Resumo:
Voltage source inverter (VSI) fed six-phase induction motor drives have high 6n +/- 1; n = odd order harmonic currents, due to absence of back emf for these currents. To suppress these harmonic currents, either bulky inductive harmonic filters or complex pulse width modulation (PWM) techniques have to be used. This paper proposes a simple harmonic elimination scheme using capacitor fed inverters, for an asymmetrical six-phase induction motor VSI fed drive. Two three phase inverters fed from a single capacitor is used on the open-end side of the motor, to suppress 6n +/- 1; n = odd order harmonics. A PWM scheme that can suppress the harmonics, as well as balance the capacitor voltage is also proposed. The capacitor fed inverters are switched so that the fundamental voltage is not affected. The proposed scheme is verified using MATLAB Simulink simulation at different speeds. The effectiveness of the scheme is demonstrated by comparing the results with those obtained by disabling the capacitor fed inverters. Experimental results are also provided to validate the functionality of the proposed controller.
Resumo:
Conventionally, street entrepreneurs were either seen as a residue from a pre-modern era that is gradually disappearing (modernisation theory), or an endeavour into which marginalised populations are driven out of necessity in the absence of alternative ways of securing a livelihood (structuralist theory). In recent years, however, participa-tioninstreetentrepreneurshiphas beenre-read eitherasa rationaleconomicchoice(neo-liberal theory) or as conducted for cultural reasons (post-modern theory). The aim of this paper is to evaluate critically these competing explanations for participation in street entrepreneurship. To do this, face-to-face interviews were conducted with 871 street entrepreneurs in the Indian city of Bangalore during 2010 concerning their reasons for participation in street entrepreneurship. The finding is that no one explanation suffices. Some 12 % explain their participation in street entrepreneurship as necessity-driven, 15 % as traditional ancestral activity, 56 % as a rational economic choice and 17 % as pursued for social or lifestyle reasons. The outcome is a call to combine these previously rival explanations in order to develop a richer and more nuanced theorisation of the multifarious motives for street entrepreneurship in emerging market economies.
Resumo:
Northeast India is one of the most highly seismically active regions in the world with more than seven earthquakes on an average per year of magnitude 5.0 and above. Reliable seismic hazard assessment could provide the necessary design inputs for earthquake resistant design of structures in this' region. In this study, deterministic as well as probabilistic methods have been attempted for seismic hazard assessment of Tripura and Mizoram states at bedrock level condition. An updated earthquake catalogue was collected from various national and international seismological agencies for the period from 1731 to 2011. The homogenization, declustering and data completeness analysis of events have been carried out before hazard evaluation. Seismicity parameters have been estimated using G R relationship for each source zone. Based on the seismicity, tectonic features and fault rupture mechanism, this region was divided into six major subzones. Region specific correlations were used for magnitude conversion for homogenization of earthquake size. Ground motion equations (Atkinson and Boore 2003; Gupta 2010) were validated with the observed PGA (peak ground acceleration) values before use in the hazard evaluation. In this study, the hazard is estimated using linear sources, identified in and around the study area. Results are presented in the form of PGA using both DSHA (deterministic seismic hazard analysis) and PSHA (probabilistic seismic hazard analysis) with 2 and 10% probability of exceedance in 50 years, and spectral acceleration (T = 0. 2 s, 1.0 s) for both the states (2% probability of exceedance in 50 years). The results are important to provide inputs for planning risk reduction strategies, for developing risk acceptance criteria and financial analysis for possible damages in the study area with a comprehensive analysis and higher resolution hazard mapping.
Resumo:
The development of a viable adsorbed natural gas onboard fuel system involves synthesizing materials that meet specific storage target requirements. We assess the impact on natural gas storage due to intermediate processes involved in taking a laboratory powder sample to an onboard packed or adsorbent bed module. We illustrate that reporting the V/V (volume of gas/volume of container) capacities based on powder adsorption data without accounting for losses due to pelletization and bed porosity, grossly overestimates the working storage capacity for a given material. Using data typically found for adsorbent materials that are carbon and MOF based materials, we show that in order to meet the Department of Energy targets of 180 V/V (equivalent STP) loading at 3.5 MPa and 298 K at the onboard packed bed level, the volumetric capacity of the pelletized sample should be at least 245 V/V and the corresponding gravimetric loading varies from 0.175 to 0.38 kg/kg for pellet densities ranging from 461.5 to 1,000 . With recent revision of the DOE target to 263 V/V at the onboard packed bed level, the volumetric loadings for the pelletized sample should be about 373 V/V.
Resumo:
The goal of the work reported in this paper is to use automated, combinatorial synthesis to generate alternative solutions to be used as stimuli by designers for ideation. FuncSION, a computational synthesis tool that can automatically synthesize solution concepts for mechanical devices by combining building blocks from a library, is used for this purpose. The objectives of FuncSION are to help generate a variety of functional requirements for a given problem and a variety of concepts to fulfill these functions. A distinctive feature of FuncSION is its focus on automated generation of spatial configurations, an aspect rarely addressed by other computational synthesis programs. This paper provides an overview of FuncSION in terms of representation of design problems, representation of building blocks, and rules with which building blocks are combined to generate concepts at three levels of abstraction: topological, spatial, and physical. The paper then provides a detailed account of evaluating FuncSION for its effectiveness in providing stimuli for enhanced ideation.