502 resultados para Estampagem (Trabalhos em metal)
Resumo:
Metal hydrazine nitrate complexes of the type M(N2H4)Nn (NO3)2 where M = Mg, n = 2; M = Mn, Fe, Co, Ni, Zn and Cd and n = 3; metal dihydrazine azide complexes of the type M(N2H4)2 (N3)2 where M = Mg, Co, Ni and Zn; and Mg(N2H4)2 (C1O4)2 have been prepared by dissolving the respective metal powders in the solution of corresponding ammonium salts (NO3, N3 and C1O4) in hydrazine hydrate. These hydrazine complexes were also prepared by the conventional method involving the addition of alcoholic hydrazine hydrate to the aqueous solution of metal salts. The hydrazine complexes have been characterised by chemical analysis, infrared spectra and differential thermal analysis (DTA). Impact sensitivities of hydrazine complexes were determined by the drop weight method. The reactivity of these hydrazine complexes does not change with the method of preparation.
Resumo:
The resistivity of selenium-doped n-InP single crystal layers grown by liquid-phase epitaxy with electron concentrations varying from 6.7 x 10$^18$ to 1.8 x 10$^20$ cm$^{-3}$ has been measured as a function of hydrostatic pressure up to 10 GPa. Semiconductor-metal transitions were observed in each case with a change in resistivity by two to three orders of magnitude. The transition pressure p$_c$ decreased monotonically from 7.24 to 5.90 GPa with increasing doping concentration n according to the relation $p_c = p_o [1 - k(n/n_m)^a]$, where n$_m$ is the concentration (per cubic centimetre) of phosphorus donor sites in InP atoms, p$_o$ is the transition pressure at low doping concentrations, k is a constant and $\alpha$ is an exponent found experimentally to be 0.637. The decrease in p$_c$ is considered to be due to increasing internal stress developed at high concentrations of ionized donors. The high-pressure metallic phase had a resistivity (2.02-6.47) x 10$^{-7}$ $\Omega$ cm, with a positive temperature coefficient dependent on doping.
Resumo:
Intra-atomic Auger transitions involving metal energy levels are found to be useful in studying the surface oxidation state as well as the oxidation of metals. Transition Metal oxides also exhibit interatomic Auger transitions, the intensities of which depend on the occupation of the metal d level. The probability of the interatomic transition is therefore highest in oxides where the metal has the d' configuration. The competition between intra-atomic and interatomic Auger transitions in oxides will be discussed as also the use of the interatomic transitions in the study of metal oxidation.
Resumo:
The free radical polymerization of acrylonitrile (AN) initiated by Cu(II) 4-anilino 2-one [Cu(II) ANIPO] Cu(II), 4-p-toluedeno 3-pentene 2-one [Cu(II) TPO], and Cu(II) 4-p-nitroanilino 3-pentene 2-one [Cu(II) NAPO] was studied in benzene at 50 and 60°C and in carbon tetrachloride (CCl4), dimethyl sulfoxide (DMSO), and methanol (MeOH) at 60°C. Although the polymerization proceeded in a heterogeneous phase, it followed the kinetics of a homogeneous process. The monomer exponents were 2 at two different temperatures and in different solvents. The square-root dependence of Rp on initiator concentration and higher monomer exponents accounted for a 1:2 complex formation between the chelate and monomer. The complex formation was shown by ultraviolet (UV) study. The activation energies, kinetics, and chain transfer constants were also evaluated.
Resumo:
Interatomic L3(M)M23(M)V(O) and L3(M)V(O)V(O) Auger transitions of some transition-metal oxides are reported for the first time. The interatomic mode of decay becomes progressively more dominant (relative to the intra-atomic mode) as the metal d level gets depleted or as the oxidation state of the metal increases. The usefulness of interatomic Auger transitions in studying oxidation of metals has been examined.
Resumo:
Electron spectroscopic studies clearly demonstrate that modification of the surfaces of Mn, Fe and Ni metals by chlorine significantly decreases the strength of interaction between the metal and adsorbed molecules such as CO and N2. This is in contrast to the effect of electropositive additives such as Ba and Al which increase the adsorption bond strength significantly.
Resumo:
A ternary metal-nucleotide complex, Na2[Cu(5’-IMP)2(im)o,8(H20)l,2(H20)2h]as~ 1be2e.n4 pHr2ep0a,r ed and its structure analyzed by X-ray diffraction (5’-IMP = inosine 5’-monophos hate; im = imidazole). The complex crystallizes in space group C222, with a = 8.733 (4) A, b = 23.213 (5) A, c = 21.489 (6) 1, and Z = 4. The structure was solved by the heavy-atom method and refined by full-matrix least-squares technique on the basis of 2008 observed reflections to a final R value of 0.087. Symmetry-related 5’-IMP anions coordinate in cis geometry through the N(7) atoms of the bases. The other cis positions of the coordination plane are statistically occupied by nitrogen atoms of disordered im groups and water oxygens with occupancies 0.4 and 0.6, respectively. Water oxygens in axial positions complete the octahedral coordination of Cu(I1). The complex is isostructural with C~S-[P~(S’-IMP),(NH~)~a] m”,o del proposed for Pt(I1) binding to DNA. The base binding observed in the present case is different from the typical ”phosphate only” binding shown from earlier studies on metal-nucleotide complexes containing various other ?r-aromatic amines.
Resumo:
Marked changes in the LVV/LMV and LVV/LMM Auger intensity ratios of Co, Ni and Cu are observed on depositing Al on their surfaces. These changes, ascribed to charge-transfer or hybridization effects, are accompanied by changes in the intensity of the satellites next to the core levels of the transition metals.
Resumo:
Nickel zinc hydroxysalt–Pt metal nanoparticle composite was prepared by intercalation of the anionic platinum complex, [PtCl6]2− in nickel zinc hydroxysalt through ion exchange reaction and subsequent reduction of the platinum complex by ethanol. Powder X-ray diffraction and microscopy studies indicate that the process of reduction of the platinum complex in the interlayer region of the anionic clay takes place topotactically without destroying the layers.
Metal-organic framework structures - how closely are they related to classical inorganic structures?
Resumo:
Metal-organic frameworks (MOFs) have emerged as an important family of compounds for which new properties are increasingly being found. The potential for such compounds appears to be immense, especially in catalysis, sorption and separation processes. In order to appreciate the properties and to design newer frameworks it is necessary to understand the structures from a fundamental perspective. The use of node, net and vertex symbols has helped in simplifying some of the complex MOF structures. Many MOF structures are beginning to be described as derived from inorganic structures. In this tutorial review, we have provided the basics of the node, the net and the vertex symbols and have explained some of the MOF structures. In addition, we have also attempted to provide some leads towards designing newer structures/topologies.
Resumo:
Transition metal molybdates of the formulaAMoO4 whereA=Fe, Co or Ni exhibit a first-order phase transition between 670K–970K. An investigation of the lowtemperature (lt) and high-temperature (ht) phases by x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, magnetic susceptibility and other physical methods shows that the phase transition is associated with a valence change of the typeA 2++Mo6+αA 3++Mo5+ in the cases of iron and cobalt molybdates.
Resumo:
Magnetic susceptibility studies of lead oxyhalide glasses containing high concentrations of transition metal oxides such as MnO and Fe2O3 have been performed. While they exhibit predominantly antiferromagnetic interactions, the low temperature (<100K) region is dominated by paramagnetic contributions. The behaviour in these glasses is found to be similar to that of covalent oxide glasses and is different from that of purely ionic sulphate glasses.