265 resultados para Efficient elliptic curve arithmetic
Resumo:
Let X be a geometrically irreductble smooth projective cruve defined over R. of genus at least 2. that admits a nontrivial automorphism, sigma. Assume that X does not have any real points. Let tau be the antiholomorphic involution of the complexification lambda(C) of X. We show that if the action of sigma on the set S(X) of all real theta characteristics of X is trivial. then the order of sigma is even, say 2k and the automorphism tau o (sigma) over cap (lambda) of X-C has a fixed point, where (sigma) over cap is the automorphism of X x C-R defined by sigma We then show that there exists X with a real point and admitting a nontrivial automorphism sigma, such that the action of sigma on S(X) is trivial, while X/
Resumo:
The coexistence curve of the carbondisulphide-acetic anhydride system has been measured. The shape of the curve in the critical region (Xc ≈ 70.89 mole % mole % CS2 and Tc ≈ 30.56° C) is determined by the equation |X′ - X″| = Bx (1 - T/Tc)β with the critical indices β = 0.34 ± 0.01 and Bx = 1.7 ± 0.1 over a range 10-6 < (Tc - T)/Tc < 10-2. The values of β and Bx agree with those of other systems and the theoretical predictions of the Ising model.
Resumo:
Previous techniques used for solving the 1-D Poisson equation ( PE) rigorously for long-channel asymmetric and independent double-gate (IDG) transistors result in potential models that involve multiple intercoupled implicit equations. As these equations need to be solved self-consistently, such potential models are clearly inefficient for compact modeling. This paper reports a different rigorous technique for solving the same PE by which one can obtain the potential profile of a generalized IDG transistor that involves a single implicit equation. The proposed Poisson solution is shown to be computationally more efficient for circuit simulation than the previous solutions.
Resumo:
In many applications of wireless ad hoc networks, wireless nodes are owned by rational and intelligent users. In this paper, we call nodes selfish if they are owned by independent users and their only objective is to maximize their individual goals. In such situations, it may not be possible to use the existing protocols for wireless ad hoc networks as these protocols assume that nodes follow the prescribed protocol without deviation. Stimulating cooperation among these nodes is an interesting and challenging problem. Providing incentives and pricing the transactions are well known approaches to stimulate cooperation. In this paper, we present a game theoretic framework for truthful broadcast protocol and strategy proof pricing mechanism called Immediate Predecessor Node Pricing Mechanism (IPNPM). The phrase strategy proof here means that truth revelation of cost is a weakly dominant-strategy (in game theoretic terms) for each node. In order to steer our mechanism-design approach towards practical implementation, we compute the payments to nodes using a distributed algorithm. We also propose a new protocol for broadcast in wireless ad hoc network with selfish nodes based on IPNPM. The features of the proposed broadcast protocol are reliability and a significantly reduced number of packet forwards compared to the number of network nodes, which in turn leads to less system-wide power consumption to broadcast a single packet. Our simulation results show the efficacy of the proposed broadcast protocol.
Resumo:
In this paper, we describe an efficient coordinated-checkpointing and recovery algorithm which can work even when the channels are assumed to be non-FIFO, and messages may be lost. Nodes are assumed to be autonomous, and they do not block while taking checkpoints. Based on the local conditions, any process can request the previous coordinator for the 'permission' to initiate a new checkpoint. Allowing multiple initiators of checkpoints avoids the bottleneck associated with a single initiator, but the algorithm permits only a single instance of checkpointing process at any given time, thus reducing much of the overhead associated with multiple initiators of distributed algorithms.
Resumo:
Combining the advanced techniques of optimal dynamic inversion and model-following neuro-adaptive control design, an efficient technique is presented for effective treatment of chronic myelogenous leukemia (CML). A recently developed nonlinear mathematical model for cell dynamics is used for the control (medication) synthesis. First, taking a set of nominal parameters, a nominal controller is designed based on the principle of optimal dynamic inversion. This controller can treat nominal patients (patients having same nominal parameters as used for the control design) effectively. However, since the parameters of an actual patient can be different from that of the ideal patient, to make the treatment strategy more effective and efficient, a model-following neuro-adaptive controller is augmented to the nominal controller. In this approach, a neural network trained online (based on Lyapunov stability theory) facilitates a new adaptive controller, computed online. From the simulation studies, this adaptive control design approach (treatment strategy) is found to be very effective to treat the CML disease for actual patients. Sufficient generality is retained in the theoretical developments in this paper, so that the techniques presented can be applied to other similar problem as well. Note that the technique presented is computationally non-intensive and all computations can be carried out online.
Resumo:
In this paper, we present a wavelet - based approach to solve the non-linear perturbation equation encountered in optical tomography. A particularly suitable data gathering geometry is used to gather a data set consisting of differential changes in intensity owing to the presence of the inhomogeneous regions. With this scheme, the unknown image, the data, as well as the weight matrix are all represented by wavelet expansions, thus yielding the representation of the original non - linear perturbation equation in the wavelet domain. The advantage in use of the non-linear perturbation equation is that there is no need to recompute the derivatives during the entire reconstruction process. Once the derivatives are computed, they are transformed into the wavelet domain. The purpose of going to the wavelet domain, is that, it has an inherent localization and de-noising property. The use of approximation coefficients, without the detail coefficients, is ideally suited for diffuse optical tomographic reconstructions, as the diffusion equation removes most of the high frequency information and the reconstruction appears low-pass filtered. We demonstrate through numerical simulations, that through solving merely the approximation coefficients one can reconstruct an image which has the same information content as the reconstruction from a non-waveletized procedure. In addition we demonstrate a better noise tolerance and much reduced computation time for reconstructions from this approach.
Resumo:
The near flow field of small aspect ratio elliptic turbulent free jets (issuing from nozzle and orifice) was experimentally studied using a 2D PIV. Two point velocity correlations in these jets revealed the extent and orientation of the large scale structures in the major and minor planes. The spatial filtering of the instantaneous velocity field using Gaussian convolution kernel shows that while a single large vortex ring circumscribing the jet seems to be present at the exit of nozzle, the orifice jet exhibited a number of smaller vortex ring pairs close to jet exit. The smaller length scale observed in the case of the orifice jet is representative of the smaller azimuthal vortex rings that generate axial vortex field as they are convected. This results in the axis-switching in the case of orifice jet and may have a mechanism different from the self induction process as observed in the case of contoured nozzle jet flow.
Resumo:
Isoselenocyanates derived from Boc/Z-amino acids are prepared by the reaction of the corresponding isonitriles with selenium powder in presence of triethylamine at reflux. The utility of these new classes of isoselenocyanates in the preparation of selenoureidodipeptidomimetics possessing both amino as well as carboxy termini has been accomplished. The H-1 NMR analysis confirmed that the protocol involving the conversion of isonitriles to isoselenocyanates and their use as coupling agents in assembling selenour-eido derivatives is free from racemization. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A symmetric solution X satisfying the matrix equation XA = AtX is called a symmetrizer of the matrix A. A general algorithm to compute a matrix symmetrizer is obtained. A new multiple-modulus residue arithmetic called floating-point modular arithmetic is described and implemented on the algorithm to compute an error-free matrix symmetrizer.
Resumo:
An algorithm that uses integer arithmetic is suggested. It transforms anm ×n matrix to a diagonal form (of the structure of Smith Normal Form). Then it computes a reflexive generalized inverse of the matrix exactly and hence solves a system of linear equations error-free.
Resumo:
The domination and Hamilton circuit problems are of interest both in algorithm design and complexity theory. The domination problem has applications in facility location and the Hamilton circuit problem has applications in routing problems in communications and operations research.The problem of deciding if G has a dominating set of cardinality at most k, and the problem of determining if G has a Hamilton circuit are NP-Complete. Polynomial time algorithms are, however, available for a large number of restricted classes. A motivation for the study of these algorithms is that they not only give insight into the characterization of these classes but also require a variety of algorithmic techniques and data structures. So the search for efficient algorithms, for these problems in many classes still continues.A class of perfect graphs which is practically important and mathematically interesting is the class of permutation graphs. The domination problem is polynomial time solvable on permutation graphs. Algorithms that are already available are of time complexity O(n2) or more, and space complexity O(n2) on these graphs. The Hamilton circuit problem is open for this class.We present a simple O(n) time and O(n) space algorithm for the domination problem on permutation graphs. Unlike the existing algorithms, we use the concept of geometric representation of permutation graphs. Further, exploiting this geometric notion, we develop an O(n2) time and O(n) space algorithm for the Hamilton circuit problem.