95 resultados para ELECTRON-TRANSFER PROPERTIES


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, fluoranthene-based derivatives with a high thermal stability were synthesized for applications in organic electroluminescent devices. The two derivatives synthesized in this study, bis(4-(7,9,10-triphenylfluoranthen-8-yl)phenyl)sulfane (TPFDPS) and 2,8-bis(7,9,10-triphenylfluoranthen-8-yl)dibenzob,d]thiophene (TPFDBT), were characterized by cyclic voltammetry, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). TPFDPS exhibits a high T-g of 210 degrees C while TPFDBT is crystalline in nature. Both the derivatives are thermally stable up to 500 degrees C. The charge transport studies reveal predominant electron transport properties. Subsequently, we fabricated blue OLEDs with 2-tert-butyl-9,10-bis-(beta-naphthyl)-anthracene (TBADN) as the emitting layer to demonstrate the applications of these molecules as an electron transporting layer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study reports the synthesis and photophysical properties of a star-shaped, novel, fluoranthene-tetraphenylethene (TFPE) conjugated luminogen, which exhibits aggregation-induced blue-shifted emission (AIBSE). The bulky fluoranthene units at the periphery prevent intramolecular rotation (IMR) of phenyl rings and induces a blueshift with enhanced emission. The AIBSE phenomenon was investigated by solvatochromic and temperature-dependent emission studies. Nanoaggregates of TFPE, formed by varying the water/THF ratio, were investigated by SEM and TEM and correlated with optical properties. The TFPE conjugate was found to be a promising fluorescent probe towards the detection of nitroaromatic compounds (NACs), especially for 2,4,6-trinitrophenol (PA) with high sensitivity and a high Stern-Volmer quenching constant. The study reveals that nanoaggregates of TFPE formed at 30 and 70% water in THF showed unprecedented sensitivity with detection limits of 0.8 and 0.5ppb, respectively. The nanoaggregates formed at water fractions of 30 and 70% exhibit high Stern-Volmer constants (K-sv=79998 and 51120m(-1), respectively) towards PA. Fluorescence quenching is ascribed to photoinduced electron transfer between TFPE and NACs with a static quenching mechanism. Test strips coated with TFPE luminogen demonstrate fast and ultra-low-level detection of PA for real-time field analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The catalytic effects of Fe2O3, Ni2O3, MnO2, and Co2O3 transition metal oxides (TMO) on the combustion of polystyrene and carboxyl-terminated polybutadiene were investigated. The order of activity of TMO's was explained by the presence of Co and absence of Fe and Ni in their lattice systems along with a reduced electron-transfer process; in systems which induce the metal ions to enter the lattice, the electron transfer process is much greater. The thermal decomposition of ammonium perchlorate propellants was enhanced to a greater extent by Co2O3 and MnO2 than by Fe2O3 and Ni2O3.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The so-called “Scheme of Squares”, displaying an interconnectivity of heterogeneous electron transfer and homogeneous (e.g., proton transfer) reactions, is analysed. Explicit expressions for the various partial currents under potentiostatic conditions are given. The formalism is applicable to several electrode geometries and models (e.g., semi-infinite linear diffusion, rotating disk electrodes, spherical or cylindrical systems) and the analysis is exact. The steady-state (t→∞) expressions for the current are directly given in terms of constant matrices whereas the transients are obtained as Laplace transforms that need to be inverted by approximation of numerical methods. The methodology employs a systems approach which replaces a system of partial differential equations (governing the concentrations of the several electroactive species) by an equivalent set of difference equations obeyed by the various partial currents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of cobalt salicylate on the oxidative degradation and ignition of polystyrene has been studied. It was found that cobalt salicylate sensitizes both the degradation and ignition of polystyrene by facilitating electron-transfer processes in the propagation step. From thermochemical and kinetic studies it was found that the cobalt ion, owing to its ability to exist in variable valence states, promotes electron transfer in the propagation step of polymer degradation, increasing the rate of propagation and consequently the overall rate. Using solid-phase thermal ignition theory, an attempt has been made to explain the sensitization of ignition by the cobalt ion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reaction of bismuth metal with WO$_3$ in the absence of oxygen yields interesting bronze-like phases. From analytical electron microscopy and X-ray photoelectron spectroscopy, the product phases are found to have the general composition Bi$_x$ WO$_3$ with bismuth in the 3+ state. Structural investigations made with high resolution electron micrscopy and cognate techniques reveal that when x < 0.02, a perovskite bronze is formed. When x $\geqslant$ 0.02, however, intergrowth tungsten bronzes (i.t.b.) containing varying widths of the WO$_3$ slab are formed, the lattice periodicity being in the range 2.3-5.1 nm in a direction perpendicular to the WO$_3$ slabs. Image-matching studies indicate that the bismuth atoms are in the tunnels of the hexagonal tungsten bronze (h.t.b.) strips and the h.t.b. strips always remain one-tunnel wide. Annealed samples show a satellite structure around the superlattice spots in the electron diffraction patterns, possibly owing to ordering of the bismuth atoms in the tunnels. The i.t.b. phases show recurrent intergrowths extending up to 100 nm in several crystals. The periodicity varies considerably within the same crystal wherever there is disordered intergrowth, but unit cell dimensions can be assigned from X-ray and electron diffraction patterns. The maximum value of x in the i.t.b. phases is ca. 0.07 and there is no evidence for the i.t.b. phase progressively giving way to the h.t.b. phase with increase in x. Hexagonal tungsten bronzes that contain bismuth with x up to 0.02 can be formed by starting from hexagonal WO$_3$, but the h.t.b. phase seems to be metastable. Optical, magnetic and electron transport properties of the i.t.b. phases have been measured and it appears that the electrons become itinerant when x > 0.05.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A number of bile acid derived photoinduced electron transfer (PET) based sensors for metal ions are prepared. A general strategy for designing the sensor with a modular nature allows for making different molecules capable of sensing different metal ions by a change in the fluorophore and receptor unit. Keeping the basic molecular structure the same, different bile acid base fluoroionophores were prepared inorder to achieve the highest sensitivity toward the metal ions. Thesensors showed similar binding constants for the same metal ion, but the degree Of fluorescence enhancement upon addition of the metal salts were different. The sensitivities of the sensors towards a certain metal were determined from the observed fluorescence enhancement upon addition of the metal salt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of transition metal oxides (Fe2O3, MnO2, Ni2O3 and Co2O3) on polystyrene/ammonium perchlorate propellant systems has been examined. The mechanism of action of the oxides in increasing the burning rate was examined by studying the effect of the oxides on the thermal decomposition and combustion of the oxidizer and the propellant. It has been concluded that one of the mechanisms by which the oxides act is by promoting the charge-transfer process, which is indicated by the enhancement of the electron-transfer process in ammonium perchlorate and by the correlation between the redox potential of the metal ions and the corresponding burning rates of the propellant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The kinetics and mechanism of anodic oxidation of chlorate ion to perchlorate ion on titanium-substrate lead dioxide electrodes have been investigated experimentally and theoretically. It has been demonstrated that the ionic strength of the solution has a marked effect on the rate of perchlorate formation, whereas the pH of the solution does not influence the reaction rate. Experimental data have also been obtained on the dependence of the reaction rate on the concentration of chlorate ion in the solution at constant ionic strength. With these data, diagnostic kinetic criteria have been deduced and compared with corresponding quantities predicted for various possible mechanisms including double layer effects on electrode kinetics. It has thus been shown that the most probable mechanisms for anodic chlorate oxidation on lead dioxide anodes involve the discharge of a water molecule in a one-electron transfer step to give an adsorbed hydroxyl radical as the rate-determining step for the overall reaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The triplets of four cyclic enethiones, including thiocoumarin, have been investigated by nanosecond laser flash photolysis. Data are presented for transient spectra and kinetics associated with triplets, quantum yields of intersystem crossing and singlet oxygen photosensitization. The quenching of the thiocoumarin triplet (A:, = 485 nm, E:,, = 8.8 x lo3 dm3 mol-' cm-'in benzene) by several olefins, amines and hydrogen donors occurs with rate constants of 107-5 x lo9 dm3 mol-' s-'; the lower limits of quantum yields ( c#+~) for the related photoreactions, estimated from ground-state depletion, are generally small (0.0-0.1 1 in benzene, except for good hydrogen donors, namely, p-methoxythiophenol and tri-n-butylstannane) . The radical anion of thiocoumarin (A,,, = 405-435 nm) is formed in two stages upon triplet quenching by triethylamine in acetonitrile; the fast component is the result of direct electron transfer to the triplet and the slower component is assigned to secondary photoreduction of the thione ground state by the a-aminoalkyl radical derived from the triethylamine radical-cation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Administration of 2-methyl-4-dimethylaminobenzene in the diet (0.1%, w/w) for 85-90 days doubled the content of mitochondria in the livers of rats. The azodye was covalently bound to liver proteins, and about 15% of the amount found in liver was associated with the mitochondrial fraction. Mitochondria isolated from the livers of azodye-fed animals showed drastically lowered ability to oxidize NAD+-linked substrates. The inhibited electron-transfer step was the reduction of ubiquinone. The organelles showed a large increase in succinate oxidase activity. The activity of cytochrome oxidase and the content of cytochrome aa3 were substantially higher in these organelles. Azodye-fed animals showed depressed serum cholesterol concentrations. The content of ubiquinone in liver also registered a small increase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mechanism of manganese electrodeposition from a sulphate bath on to a stainless-steel substrate has been studied by using current efficiency data to resolve the totali-E curves. A simple, two-step electron transfer mechanism:is proposed to explain the following experimentally obtained parameters: cathodic and anodic transfer coefficients, reaction order and stoichiometric number. The mechanism also explains the effect of pH oni o,Mn and on the corrosion currents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electronic structures of a series of 4-substituted pyridine N-oxides and 4-nitroquinoline N-oxide are investigated using the simple Pariser-Parr-Pople (PPP), a modified PPP, IEH and MINDO/2 methods. The electronic absorption band maxima and dipole moments are calculated and compared with experimental values. The photoelectron spectra of these compounds are assigned. The nature of the N-oxide group is characterized using the orbital population distributions. The antifungal activity exhibited by some of these compounds is discussed in terms of the nucleophilic frontier electron densities, superdelocalizabilities and electron acceptor properties. The effect of the electron releasing as well as the electron withdrawing substituents on the physico-chemical properties is explained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thermal decomposition of powdered ammonium perchlorate, catalysed by manganese dioxide (MnO2), has been studied in the low concentration ranges of the catalyst. MnO2 sensitises the thermal decomposition of ammonium perchlorate. The activation energy estimations of catalysed ammonium perchlorate show that the value is about 30 kcal/mol throughout the low and the high temperature regions whereas uncatalysed ammonium perchlorate gives two activation energies, 20 kcal/mol in the low temperature region (280-320°C) and 60 kcal/mol in the higher temperature region (350-390°C). This behaviour has been explained on the basis of an electron transfer process. The effectiveness of MnO2 in the thermal decomposition further increases on pre-heating the sample at 50°C for two weeks; manganese ions enter the ammonium perchlorate lattice during the process of pre-heating.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Investigations on the structure and function of hemoglobin (Hb) confined inside sol-gel template synthesized silica nanotubes (SNTs) have been discussed here. Immobilization of hemoglobin inside SNTs resulted in the enhancement of direct electron transfer during an electrochemical reaction. Extent of influence of nanoconfinement on protein activity is further probed via ligand binding and thermal stability studies. Electrochemical investigations show reversible binding of n-donor liquid ligands, such as pyridine and its derivatives, and predictive variation in their redox potentials suggests an absence of any adverse effect on the structure and function of Hb confined inside nanometer-sized channels of SNTs. Immobilization also resulted in enhanced thermal stability of Hb. The melting or denaturation temperature of Hb immobilized inside SNTs increase by approximately 4 degrees C as compared with that of free Hb in solution.