250 resultados para Drug determination
Resumo:
A simple and rapid method, based on the open-circuit decay of potential, is described for the determination of the current efficiency with which metals are electrodeposited. The advantages and disadvantages of the method are discussed.
Resumo:
A methodology for determining spacecraft attitude and autonomously calibrating star camera, both independent of each other, is presented in this paper. Unlike most of the attitude determination algorithms where attitude of the satellite depend on the camera calibrating parameters (like principal point offset, focal length etc.), the proposed method has the advantage of computing spacecraft attitude independently of camera calibrating parameters except lens distortion. In the proposed method both attitude estimation and star camera calibration is done together independent of each other by directly utilizing the star coordinate in image plane and corresponding star vector in inertial coordinate frame. Satellite attitude, camera principal point offset, focal length (in pixel), lens distortion coefficient are found by a simple two step method. In the first step, all parameters (except lens distortion) are estimated using a closed-form solution based on a distortion free camera model. In the second step lens distortion coefficient is estimated by linear least squares method using the solution of the first step to be used in the camera model that incorporates distortion. These steps are applied in an iterative manner to refine the estimated parameters. The whole procedure is faster enough for onboard implementation.
Resumo:
An optimal pitch steering programme of a solid-fuel satellite launch vehicle to maximize either (1) the injection velocity at a given altitude, or (2) the size of circular orbit, for a given payload is presented. The two-dimensional model includes the rotation of atmosphere with the Earth, the vehicle's lift and drag, variation of thrust with time and altitude, inverse-square gravitational field, and the specified initial vertical take-off. The inequality constraints on the aerodynamic load, control force, and turning rates are also imposed. Using the properties of the central force motion the terminal constraint conditions at coast apogee are transferred to the penultimate stage burnout. Such a transformation converts a time-free problem into a time-fixed one, reduces the number of terminal constraints, improves accuracy, besides demanding less computer memory and time. The adjoint equations are developed in a compact matrix form. The problem is solved on an IBM 360/44 computer using a steepest ascent algorithm. An illustrative analysis of a typical launch vehicle establishes the speed of convergence, and accuracy and applicability of the algorithm.
Resumo:
In cases whazo zotatLon of the seoondazy pztncipal 8tzo,ae axes along tha light path ,exists, it is always poaeible to detezmlna two dizactions along which plane-polazlaad light ,antazlng the model ,amerCe8 as plene-pela~l,aed light fzom the model. Puzth,az the nat zstazdatton Pot any light path is dlff,azant Prom the lntsgtatad zetazd,ation Pat the l£ght path nogZsctlng the ePfsct or z,atation.
Resumo:
Any stressed photoelastic medium can be reduced to an optically equivalent model consisting of a linear retarder, with retardation delta1 and principal axis at azimuth phgr1, and a pure rotator of power phgr2. The paper describes two simple methods to determine these quantities experimentally. Further, a method is described to overcome the problem of rotational effects in scattered-light investigations. This new method makes use of the experimentally determined characteristic parameters.
Resumo:
Hydrazinium thiocyanate, N2H5SCN, has been used for the determination of copper in copper salts. The reagent reduces the copper ions to the cuprous state and precipitates cuprous thiocyanate Cu2(SCN)2, quantitatively.
Resumo:
Checkpoint-1 kinase plays an important role in the G(2)M cell cycle control, therefore its inhibition by small molecules is of great therapeutic interest in oncology. In this paper, we have reported the virtual screening of an in-house library of 2499 pyranopyrazole derivatives against the ATP-binding site of Chk1 kinase using Glide 5.0 program, which resulted in six hits. All these ligands were docked into the site forming most crucial interactions with Cys87, Glu91 and Leu15 residues. From the observed results these ligands are suggested to be potent inhibitors of Chk1 kinase with sufficient scope for further elaboration.
Resumo:
The crucial role of the drug carrier surface chemical moeities on the uptake and in vitro release of drug is discussed here in a systematic manner. Mesoporous alumina with a wide pore size distribution (2-7 nm) functionalized with various hydrophilic and hydrophobic surface chemical groups was employed as the carrier for delivery of the model drug ibuprofen. Surface functionalization with hydrophobic groups resulted in low degree of drug loading (approximately 20%) and fast rate of release (85% over a period of 5 h) whereas hydrophilic groups resulted in a significantly higher drug payloads (21%-45%) and slower rate of release (12%-40% over a period of 5 h). Depending on the chemical moiety, the diffusion controlled (proportional to time(-0.5)) drug release was additionally observed to be dependent on the mode of arrangement of the functional groups on the alumina surface as well as on the pore characteristics of the matrix. For all mesoporous alumina systems the drug dosages were far lower than the maximum recommended therapeutic dosages (MRTD) for oral delivery. We envisage that the present study would aid in the design of delivery systems capable of sustained release of multiple drugs.
Resumo:
The conventional Clauser-chart method for determination of local skin friction in zero or weak pressure-gradient turbulent boundary layer flows fails entirely in strong pressure-gradient situations. This failure occurs due to the large departure of the mean velocity profile from the universal logarithmic law upon which the conventional Clauser-chart method is based. It is possible to extend this method,even for strong pressure-gradient situations involving equilibrium or near-equilibrium turbulent boundary layers by making use of the so-called non-universal logarithmic laws. These non-universal log laws depend on the local strength of the pressure gradient and may be regarded as perturbations of the universal log law.The present paper shows that the modified Clauser-chart method, so developed, yields quit satisfactory results in terms of estimation of local skin friction in strongly accelerated or retarded equilibrium and near-equilibrium turbulent boundary layers that are not very close to relaminarization or separation.
Resumo:
The study on the formation and growth of topological close packed (TCP) compounds is important to understand the performance of turbine blades in jet engine applications. These deleterious phases grow mainly by diffusion process in the superalloy substrate. Significant volume change was found because of growth of the p phase in Co-Mo system. Growth kinetics of this phase and different diffusion parameters, like interdiffusion, intrinsic and tracer diffusion coefficients are calculated. Further the activation energy, which provides an idea about the mechanism, is determined. Moreover, the interdiffusion coefficient in Co(Mo) solid solution and impurity diffusion coefficient of Mo in Co are determined.
Resumo:
Importance of the field: The shift in focus from ligand based design approaches to target based discovery over the last two to three decades has been a major milestone in drug discovery research. Currently, it is witnessing another major paradigm shift by leaning towards the holistic systems based approaches rather the reductionist single molecule based methods. The effect of this new trend is likely to be felt strongly in terms of new strategies for therapeutic intervention, new targets individually and in combinations, and design of specific and safer drugs. Computational modeling and simulation form important constituents of new-age biology because they are essential to comprehend the large-scale data generated by high-throughput experiments and to generate hypotheses, which are typically iterated with experimental validation. Areas covered in this review: This review focuses on the repertoire of systems-level computational approaches currently available for target identification. The review starts with a discussion on levels of abstraction of biological systems and describes different modeling methodologies that are available for this purpose. The review then focuses on how such modeling and simulations can be applied for drug target discovery. Finally, it discusses methods for studying other important issues such as understanding targetability, identifying target combinations and predicting drug resistance, and considering them during the target identification stage itself. What the reader will gain: The reader will get an account of the various approaches for target discovery and the need for systems approaches, followed by an overview of the different modeling and simulation approaches that have been developed. An idea of the promise and limitations of the various approaches and perspectives for future development will also be obtained. Take home message: Systems thinking has now come of age enabling a `bird's eye view' of the biological systems under study, at the same time allowing us to `zoom in', where necessary, for a detailed description of individual components. A number of different methods available for computational modeling and simulation of biological systems can be used effectively for drug target discovery.
Resumo:
The main objective of on-line dynamic security assessment is to take preventive action if required or decide remedial action if a contingency actually occurs. Stability limits are obtained for different contingencies. The mode of instability is one of the outputs of dynamic security analysis. When a power system becomes unstable, it splits initially into two groups of generators, and there is a unique cutset in the transmission network known as critical cutset across which the angles become unbounded. The knowledge of critical cutset is additional information obtained from dynamic security assessment, which can be used for initiating preventive control actions, deciding emergency control actions, and adaptive out-of-step relaying. In this article, an analytical technique for the fast prediction of the critical cutset by system simulation for a short duration is presented. Case studies on the New England ten-generator system are presented. The article also suggests the applications of the identification of critical cutsets.
Resumo:
An adaptive drug delivery design is presented in this paper using neural networks for effective treatment of infectious diseases. The generic mathematical model used describes the coupled evolution of concentration of pathogens, plasma cells, antibodies and a numerical value that indicates the relative characteristic of a damaged organ due to the disease under the influence of external drugs. From a system theoretic point of view, the external drugs can be interpreted as control inputs, which can be designed based on control theoretic concepts. In this study, assuming a set of nominal parameters in the mathematical model, first a nonlinear controller (drug administration) is designed based on the principle of dynamic inversion. This nominal drug administration plan was found to be effective in curing "nominal model patients" (patients whose immunological dynamics conform to the mathematical model used for the control design exactly. However, it was found to be ineffective in curing "realistic model patients" (patients whose immunological dynamics may have off-nominal parameter values and possibly unwanted inputs) in general. Hence, to make the drug delivery dosage design more effective for realistic model patients, a model-following adaptive control design is carried out next by taking the help of neural networks, that are trained online. Simulation studies indicate that the adaptive controller proposed in this paper holds promise in killing the invading pathogens and healing the damaged organ even in the presence of parameter uncertainties and continued pathogen attack. Note that the computational requirements for computing the control are very minimal and all associated computations (including the training of neural networks) can be carried out online. However it assumes that the required diagnosis process can be carried out at a sufficient faster rate so that all the states are available for control computation.
Resumo:
Shikimic acid, more commonly known by its anionic form, shikimate, is an important intermediate compound of the ‘shikimate pathway’ in plants and microorganisms1. It is the principal precursor for the synthesis of aromatic amino acids, phenylalanine, tryptophan and tyrosine and other compounds such as alkaloids, phenolics and phenyl propanoids2. It is used extensively as a chiral building block for the synthesis of a number of compounds in both pharmaceutical and cosmetic industries3. In the recent past, the focus on shikimic acid has increased since it is the key precursor for the synthesis of Tamiflu, the only drug against avian flu caused by the H5N1 virus4,5. Shikimic acid is converted to a diethyl ketal intermediate, which is then reduced in two steps to an epoxide that is finally transformed to Tamiflu6.
Resumo:
Silica nanotubes (SNTs) have been demonstrated here as a versatile host for controlled drug delivery and biosensing. The sol-gel template synthesized SNTs have a slow rate of drug release. Application of an external stimulus in the form of ultrasound to or chemical functionalization of synthesized SNT results in higher yield of drug release as well as yield of drug release varying linearly with time. In case of controlled drug delivery triggered by ultrasound, drug yield as function of time is found to be heavily dependent on the ultrasound impulse protocol. Impulses of shorter duration (similar to 0.5 min) and shorter time intervals between successive impulses resulted in higher drug yields. Confinement of hemoglobin (Hb) inside nanometer sized channels of SNT does not have any detrimental effect on the native protein structure and function. Observance of significant enhancement in direct electron transfer of Hb makes the SNTs also promising for application in biosensors.