78 resultados para Drop Tests
Resumo:
In the present work, the reaction between a molten iron drop and dense alumina was studied using the X-ray sessile-drop method under different oxygen partial pressures in the gas atmosphere. The changes in contact angles between the iron drop and the alumina substrate were followed as functions of temperature and varying partial pressures of oxygen in the temperature range 1823 to 1873 K both in static and dynamic modes. The results of the contact angle measurements with pure iron in contact with dense alumina in extremely well-purified argon as well as under different oxygen partial pressures in the gas atmosphere showed good agreement with earlier measurements reported in the literature. In the dynamic mode, when argon was replaced by a CO-CO2-Ar mixture with a well-defined PO, in the gas, the contact angle showed an initial decrease followed by a period of nearly constant contact angle. At the end of this period, the length of which was a function of the P-O2 imposed, a further steep decrease in the contact angle was noticed. An intermediate layer of FeAl2O4 was detected in the scanning electron microscope (SEM) analysis of the reacted substrates. An interesting observation in the present experiments is that the iron drop moved away from the site of the reaction once the product layer covered the interface. The results are analyzed on the basis of the various forces acting on the drop.
Resumo:
The processing maps are being developed for use in optimising hot workability and controlling the microstructure of the product. The present investigation deals with the examination to assess the prediction of the processing maps for a 15Cr-15Ni-2.2Mo-0.3Ti austenitic stainless steel using forging and rolling tests at different temperatures in the range of 600-1200 degreesC. The tensile properties of these deformed products were evaluated at room temperature. The influence of the processing conditions, i.e. strain rate and temperature on the tensile properties of the deformed product were analysed to identify the optimum processing parameters. The results have shown good agreement between the regimes exhibited by the map and the properties of the rolled or forged product. The optimum parameters for processing of this steel were identified as rolling or press forging at temperatures above 1050 degreesC to obtain optimum product properties. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This paper is focused on the development of a model for predicting the mean drop size in effervescent sprays. A combinatorial approach is followed in this modeling scheme, which is based on energy and entropy principles. The model is implemented in cascade in order to take primary breakup (due to exploding gas bubbles) and secondary breakup (due to shearing action of surrounding medium) into account. The approach in this methodology is to obtain the most probable drop size distribution by maximizing the entropy while satisfying the constraints of mass and energy balance. The comparison of the model predictions with the past experimental data is presented for validation. A careful experimental study is conducted over a wide range of gas-to-liquid ratios, which shows a good agreement with the model predictions: It is observed that the model gives accurate results in bubbly and annular flow regimes. However, discrepancies are observed in the transitional slug flow regime of the atomizer.
Resumo:
We prepared thin films composed of pure TiO2 or TiO2 with an Fe additive (at concentrations of 0.2-0.8 wt%) via a simple and cost effective sol gel process, and tested their antifungal properties (against Candida albicans (MTCC-1637), Candida tropicalis (MTCC-184), Candida parapsilosis (MTCC-2509), and Candida glabrata (MTCC-3019) and antibacterial properties (against Staphylococcus faecalis (NCIM-2604) Staphylococcus epidermidis (NCIM-2493), Staphylococcus aureus (NCIL-2122), and Bacillus subtilis (NCIM-2549)). The films were deposited on glass and Si substrates and subjected to annealing at 400 degrees C for 3 h in ambient air. The film structural and morphological properties were investigated by X-ray photoelectron spectroscopy profilometry and scanning electron microscopy, respectively. Antifungal and antibacterial tests were conducted using the drop test method. Among the species examined, Candida albicans (MTCC-1637), and Staphylococcus aureus (NCIL-2122) showed complete colony formation inhibition after exposure for 4 h for the TiO2 loaded with 0.8 wt% Fe thin films. These results indicate that increasing the Fe concentration increased the antimicrobial activity, with complete inhibition of colony formation after 4 h exposure.
Resumo:
Based on the liquid-drop model, we have evaluated the Tolman length and surface energy of nanoparticles for different elements and compared with other theoretical models as well as the available simulated data. The predictions of the model show good agreement with the simulated results. Like the cohesive energy and melting temperature, the size-dependency of surface energy is also shape-dependent. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Piezoelectric-device-based vibration energy harvesting requires a rectifier for conversion of input ac to usable dc form. Power loss due to diode drop in rectifier is a significant fraction of the already low levels of harvested power. The proposed circuit is a low-drop-diode equivalent, which mimics a diode using linear region-operated MOSFET. The proposed diode equivalent is powered directly from input signal and requires no additional power supply for its control. Power used by the control circuit is kept at a bare minimum to have an overall output power improvement. Diode equivalent was used to replace the four diodes in a full-wave bridge rectifier, which is the basic full- wave rectifier and is a part of the more advanced rectifiers like switch-only and bias-flip rectifiers. Simulation in 130-nm technology and experiment with discrete components show that a bridge rectifier with the proposed diode provides a 30-169% increase in output power extracted from piezoelectric device, as compared to a bridge rectifier with diode-connected MOSFETs. The bridge rectifier with the proposed diode can extract 90% of the maximum available power from an ideal piezoelectric device-bridge rectifier circuit. Setting aside the constraint of power loss, simulations indicate that diode drop as low as 10 mV at 38 mu A can be achieved.
Resumo:
We study theoretically the hydrodynamics of a fluid drop containing oriented filaments endowed with active contractile or extensile stresses and placed on a solid surface. The active stresses alter qualitatively the wetting properties of the drop, leading to new spreading laws and novel static drop shapes. Candidate systems for testing our predictions include cytoskeletal extracts with motors and ATP, suspensions of bacteria or pulsatile cells, or fluids laden with artificial self-propelled colloids.
Resumo:
A novel method is proposed for fracture toughness determination of graded microstructurally complex (Pt,Ni)Al bond coats using edge-notched doubly clamped beams subjected to bending. Micron-scale beams are machined using the focused ion beam and loaded in bending under a nanoindenter. Failure loads gathered from the pop-ins in the load-displacement curves combined with XFEM analysis are used to calculate K-c at individual zones, free from substrate effects. The testing technique and sources of errors in measurement are described and possible micromechanisms of fracture in such heterogeneous coatings discussed.