84 resultados para Diversity turnover


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multipleoutput (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation.Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2 × 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations,compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for nonrectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider single-source single-sink (ss-ss) multi-hop relay networks, with slow-fading links and single-antenna half-duplex relay nodes. While two-hop cooperative relay networks have been studied in great detail in terms of the diversity-multiplexing tradeoff (DMT), few results are available for more general networks. In this paper, we identify two families of networks that are multi-hop generalizations of the two-hop network: K-Parallel-Path (KPP)networks and layered networks.KPP networks, can be viewed as the union of K node-disjoint parallel relaying paths, each of length greater than one. KPP networks are then generalized to KPP(I) networks, which permit interference between paths and to KPP(D) networks, which possess a direct link from source to sink. We characterize the DMT of these families of networks completely for K > 3. Layered networks are networks comprising of layers of relays with edges existing only between adjacent layers, with more than one relay in each layer. We prove that a linear DMT between the maximum diversity dmax and the maximum multiplexing gain of 1 is achievable for single-antenna fully-connected layered networks. This is shown to be equal to the optimal DMT if the number of relaying layers is less than 4.For multiple-antenna KPP and layered networks, we provide an achievable DMT, which is significantly better than known lower bounds for half duplex networks.For arbitrary multi-terminal wireless networks with multiple source-sink pairs, the maximum achievable diversity is shown to be equal to the min-cut between the corresponding source and the sink, irrespective of whether the network has half-duplex or full-duplex relays. For arbitrary ss-ss single-antenna directed acyclic networks with full-duplex relays, we prove that a linear tradeoff between maximum diversity and maximum multiplexing gain is achievable.Along the way, we derive the optimal DMT of a generalized parallel channel and derive lower bounds for the DMT of triangular channel matrices, which are useful in DMT computation of various protocols. We also give alternative and often simpler proofs of several existing results and show that codes achieving full diversity on a MIMO Rayleigh fading channel achieve full diversity on arbitrary fading channels. All protocols in this paper are explicit and use only amplify-and-forward (AF) relaying. We also construct codes with short block-lengths based on cyclic division algebras that achieve the optimal DMT for all the proposed schemes.Two key implications of the results in the paper are that the half-duplex constraint does not entail any rate loss for a large class of cooperative networks and that simple AF protocols are often sufficient to attain the optimal DMT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in vegetation are taking place due to anthropogenic activities since the colonization of the evergreen forest zone of Western Ghats. The forests of the Western Ghats were contiguous and uniformly rich in endemism within each climatic and physiographic regime. The region continues to be one of the biodiversity hot spots of the world. However unplanned developmental activities are altering the balance of the ecosystem. This study focuses on the floristic structure, composition and diversity of forests with varying degree of human disturbances. Based on the investigations, various strategies for conservation and sustainable utilization of forest resources were proposed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precoding for multiple-input multiple-output (MIMO) antenna systems is considered with perfect channel knowledge available at both the transmitter and the receiver. For two transmit antennas and QAM constellations, a real-valued precoder which is approximately optimal (with respect to the minimum Euclidean distance between points in the received signal space) among real-valued precoders based on the singular value decomposition (SVD) of the channel is proposed. The proposed precoder is obtainable easily for arbitrary QAM constellations, unlike the known complex-valued optimal precoder by Collin et al. for two transmit antennas which is in existence for 4-QAM alone and is extremely hard to obtain for larger QAM constellations. The proposed precoding scheme is extended to higher number of transmit antennas on the lines of the E - d(min) precoder for 4-QAM by Vrigneau et al. which is an extension of the complex-valued optimal precoder for 4-QAM. The proposed precoder's ML-decoding complexity as a function of the constellation size M is only O(root M)while that of the E - d(min) precoder is O(M root M)(M = 4). Compared to the recently proposed X- and Y-precoders, the error performance of the proposed precoder is significantly better while being only marginally worse than that of the E - d(min) precoder for 4-QAM. It is argued that the proposed precoder provides full-diversity for QAM constellations and this is supported by simulation plots of the word error probability for 2 x 2, 4 x 4 and 8 x 8 systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low complexity decoders called Partial Interference Cancellation (PIC) and PIC with Successive Interference Cancellation (PIC-SIC), which include the Zero Forcing (ZF) and ZF-SIC receivers as special cases, were given by Guo and Xia along with sufficient conditions for a Space-Time Block Code (STBC) to achieve full diversity with PIC/PIC-SIC decoding for point-to-point MIMO channels. In Part-I of this two part series of papers, we give new conditions for an STBC to achieve full diversity with PIC and PIC-SIC decoders, which are equivalent to Guo and Xia's conditions, but are much easier to check. We then show that PIC and PIC-SIC decoders are capable of achieving the full cooperative diversity available in wireless relay networks and give sufficient conditions for a Distributed Space-Time Block Code (DSTBC) to achieve full diversity with PIC and PIC-SIC decoders. In Part-II, we construct new low complexity full-diversity PIC/PIC-SIC decodable STBCs and DSTBCs that achieve higher rates than the known full-diversity low complexity ML decodable STBCs and DSTBCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a family/sequence of Space-Time Block Codes (STBCs) C1, C2,⋯, with increasing number of transmit antennas Ni, with rates Ri complex symbols per channel use (cspcu), i = 1,2,⋯, the asymptotic normalized rate is defined as limi→∞ Ri/Ni. A family of STBCs is said to be asymptotically-good if the asymptotic normalized rate is non-zero, i.e., when the rate scales as a non-zero fraction of the number of transmit antennas, and the family of STBCs is said to be asymptotically-optimal if the asymptotic normalized rate is 1, which is the maximum possible value. In this paper, we construct a new class of full-diversity STBCs that have the least maximum-likelihood (ML) decoding complexity among all known codes for any number of transmit antennas N>;1 and rates R>;1 cspcu. For a large set of (R,N) pairs, the new codes have lower ML decoding complexity than the codes already available in the literature. Among the new codes, the class of full-rate codes (R=N) are asymptotically-optimal and fast-decodable, and for N>;5 have lower ML decoding complexity than all other families of asymptotically-optimal, fast-decodable, full-diversity STBCs available in the literature. The construction of the new STBCs is facilitated by the following further contributions of this paper: (i) Construction of a new class of asymptotically-good, full-diversity multigroup ML decodable codes, that not only includes STBCs for a larger set of antennas, but also either matches in rate or contains as a proper subset all other high-rate or asymptotically-good, delay-optimal, multigroup ML decodable codes available in the literature. (ii) Construction of a new class of fast-group-decodable codes (codes that combine the low ML decoding complexity properties of multigroup ML decodable codes and fast-decodable codes) for all even number of transmit antennas and rates 1 <; R ≤ 5/4.- - (iii) Given a design with full-rank linear dispersion matrices, we show that a full-diversity STBC can be constructed from this design by encoding the real symbols independently using only regular PAM constellations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we address the design of codes which achieve modulation diversity in block fading single-input single-output (SISO) channels with signal quantization at the receiver. With an unquantized receiver, coding based on algebraic rotations is known to achieve maximum modulation coding diversity. On the other hand, with a quantized receiver, algebraic rotations may not guarantee gains in diversity. Through analysis, we propose specific rotations which result in the codewords having equidistant component-wise projections. We show that the proposed coding scheme achieves maximum modulation diversity with a low-complexity minimum distance decoder and perfect channel knowledge. Relaxing the perfect channel knowledge assumption we propose a novel channel training/estimation technique to estimate the channel. We show that our coding/training/estimation scheme and minimum distance decoding achieves an error probability performance similar to that achieved with perfect channel knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dielectric dispersion and NMRD experiments have revealed that a significant fraction of water molecules in the hydration shell of various proteins do not exhibit any slowing down of dynamics. This is usually attributed to the presence of the hydrophobic residues (HBR) on the surface, although HBRs alone cannot account for the large amplitude of the fast component. Solvation dynamics experiments and also computer simulation studies, on the other hand, repeatedly observed the presence of a non-negligible slow component. Here we show, by considering three well-known proteins (lysozyme, myoglobin and adelynate kinase), that the fast component arises partly from the response of those water molecules that are hydrogen bonded with the backbone oxygen (BBO) atoms. These are structurally and energetically less stable than those with the side chain oxygen (SCO) atoms. In addition, the electrostatic interaction energy distribution (EIED) of individual water molecules (hydrogen bonded to SCO) with side chain oxygen atoms shows a surprising two peak character with the lower energy peak almost coincident with the energy distribution of water hydrogen bonded to backbone oxygen atoms (BBO). This two peak contribution appears to be quite general as we find it for lysozyme, myoglobin and adenylate kinase (ADK). The sharp peak of EIED at small energy (at less than 2 k(B)T) for the BBO atoms, together with the first peak of EIED of SCO and the HBRs on the protein surface, explain why a large fraction (similar to 80%) of water in the protein hydration layer remains almost as mobile as bulk water Significant slowness arises only from the hydrogen bonds that populate the second peak of EIED at larger energy (at about 4 k(B)T). Thus, if we consider hydrogen bond interaction alone, only 15-20% of water molecules in the protein hydration layer can exhibit slow dynamics, resulting in an average relaxation time of about 5-10 ps. The latter estimate assumes a time constant of 20-100 ps for the slow component. Interestingly, relaxation of water molecules hydrogen bonded to back bone oxygen exhibit an initial component faster than the bulk, suggesting that hydrogen bonding of these water molecules remains frustrated. This explanation of the heterogeneous and non-exponential dynamics of water in the hydration layer is quantitatively consistent with all the available experimental results, and provides unification among diverse features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Niche differentiation has been proposed as an explanation for rarity in species assemblages. To test this hypothesis requires quantifying the ecological similarity of species. This similarity can potentially be estimated by using phylogenetic relatedness. In this study, we predicted that if niche differentiation does explain the co-occurrence of rare and common species, then rare species should contribute greatly to the overall community phylogenetic diversity (PD), abundance will have phylogenetic signal, and common and rare species will be phylogenetically dissimilar. We tested these predictions by developing a novel method that integrates species rank abundance distributions with phylogenetic trees and trend analyses, to examine the relative contribution of individual species to the overall community PD. We then supplement this approach with analyses of phylogenetic signal in abundances and measures of phylogenetic similarity within and between rare and common species groups. We applied this analytical approach to 15 long-term temperate and tropical forest dynamics plots from around the world. We show that the niche differentiation hypothesis is supported in six of the nine gap-dominated forests but is rejected in the six disturbance-dominated and three gap-dominated forests. We also show that the three metrics utilized in this study each provide unique but corroborating information regarding the phylogenetic distribution of rarity in communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bacterial second messenger cyclic diguanosine monophosphate (c-di-GMP) plays an important role in a variety of cellular functions, including biofilm formation, alterations in the cell surface, host colonization and regulation of bacterial flagellar motility, which enable bacteria to survive changing environmental conditions. The cellular level of c-di-GMP is regulated by a balance between opposing activities of diguanylate cyclases (DGCs) and cognate phosphodiesterases (PDE-As). Here, we report the presence and importance of a protein, MSDGC-1 (an orthologue of Rv1354c in Mycobacterium tuberculosis), involved in c-di-GMP turnover in Mycobacterium smegmatis. MSDGC-1 is a multidomain protein, having GAF, GGDEF and EAL domains arranged in tandem, and exhibits both c-di-GMP synthesis and degradation activities. Most other proteins containing GGDEF and EAL domains have been demonstrated to have either DGC or PDE-A activity. Unlike other bacteria, which harbour several copies of the protein involved in c-di-GMP turnover, M. smegmatis has a single genomic copy, deletion of which severely affects long-term survival under conditions of nutrient starvation. Overexpression of MSDGC-1 alters the colony morphology and growth profile of M. smegmatis. In order to gain insights into the regulation of the c-di-GMP level, we cloned individual domains and tested their activities. We observed a loss of activity in the separated domains, indicating the importance of full-length MSDGC-1 for controlling bifunctionality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: There has been growing interest in integrative taxonomy that uses data from multiple disciplines for species delimitation. Typically, in such studies, monophyly is taken as a proxy for taxonomic distinctiveness and these units are treated as potential species. However, monophyly could arise due to stochastic processes. Thus here, we have employed a recently developed tool based on coalescent approach to ascertain the taxonomic distinctiveness of various monophyletic units. Subsequently, the species status of these taxonomic units was further tested using corroborative evidence from morphology and ecology. This inter-disciplinary approach was implemented on endemic centipedes of the genus Digitipes (Attems 1930) from the Western Ghats (WG) biodiversity hotspot of India. The species of the genus Digitipes are morphologically conserved, despite their ancient late Cretaceous origin. Principal Findings: Our coalescent analysis based on mitochondrial dataset indicated the presence of nine putative species. The integrative approach, which includes nuclear, morphology, and climate datasets supported distinctiveness of eight putative species, of which three represent described species and five were new species. Among the five new species, three were morphologically cryptic species, emphasizing the effectiveness of this approach in discovering cryptic diversity in less explored areas of the tropics like the WG. In addition, species pairs showed variable divergence along the molecular, morphological and climate axes. Conclusions: A multidisciplinary approach illustrated here is successful in discovering cryptic diversity with an indication that the current estimates of invertebrate species richness for the WG might have been underestimated. Additionally, the importance of measuring multiple secondary properties of species while defining species boundaries was highlighted given variable divergence of each species pair across the disciplines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aminoacyl-tRNA synthetases (aaRS) catalyze the bimolecular association reaction between amino acid and tRNA by specifically and unerringly choosing the cognate amino acid and tRNA. There are two classes of such synthetases that perform tRNA-aminoacylation reaction. Interestingly, these two classes of aminoacyl-tRNA synthetases differ not only in their structures but they also exhibit remarkably distinct kinetics under pre-steady-state condition. The class I synthetases show initial burst of product formation followed by a slower steady-state rate. This has been argued to represent the influence of slow product release. In contrast, there is no burst in the case of class H enzymes. The tight binding of product with enzyme for class I enzymes is correlated with the enhancement of rate in presence of elongation factor. EF-TU. In spite of extensive experimental studies, there is no detailed theoretical analysis that can provide a quantitative understanding of this important problem. In this article, we present a theoretical investigation of enzyme kinetics for both classes of aminoacyl-tRNA synthetases. We present an augmented kinetic scheme and then employ the methods of time-dependent probability statistics to obtain expressions for the first passage time distribution that gives both the time-dependent and the steady-state rates. The present study quantitatively explains all the above experimental observations. We propose an alternative path way in the case of class II enzymes showing the tRNA-dependent amino acid activation and the discrepancy between the single-turnover and steady-state rate.