114 resultados para Distribution network reconfiguration problem
Resumo:
We consider the problem of tracking an intruder in a plane region by using a wireless sensor network comprising motes equipped with passive infrared (PIR) sensors deployed over the region. An input-output model for the PIR sensor and a method to estimate the angular speed of the target from the sensor output are proposed. With the measurement model so obtained, we study the centralized and decentralized tracking performance using the extended Kalman filter.
Resumo:
Likely spatial distributions of network-modifying (and mobile) cations in (oxide) glasses are discussed here. At very low modifier concentrations, the ions form dipoles with non-bridging oxygen centres while, at higher levels of modification, the cations tend to order as a result of Coulombic interactions. Activation energies for cation migration are calculated, assuming that the ions occupy (face-sharing) octahedral sites. It is found that conductivity activation energy decreases markedly with increasing modifier content, in agreement with experiment.
Resumo:
The weighted-least-squares method using sensitivity-analysis technique is proposed for the estimation of parameters in water-distribution systems. The parameters considered are the Hazen-Williams coefficients for the pipes. The objective function used is the sum of the weighted squares of the differences between the computed and the observed values of the variables. The weighted-least-squares method can elegantly handle multiple loading conditions with mixed types of measurements such as heads and consumptions, different sets and number of measurements for each loading condition, and modifications in the network configuration due to inclusion or exclusion of some pipes affected by valve operations in each loading condition. Uncertainty in parameter estimates can also be obtained. The method is applied for the estimation of parameters in a metropolitan urban water-distribution system in India.
Resumo:
This paper presents an efficient Simulated Annealing with valid solution mechanism for finding an optimum conflict-free transmission schedule for a broadcast radio network. This is known as a Broadcast Scheduling Problem (BSP) and shown as an NP-complete problem, in earlier studies. Because of this NP-complete nature, earlier studies used genetic algorithms, mean field annealing, neural networks, factor graph and sum product algorithm, and sequential vertex coloring algorithm to obtain the solution. In our study, a valid solution mechanism is included in simulated annealing. Because of this inclusion, we are able to achieve better results even for networks with 100 nodes and 300 links. The results obtained using our methodology is compared with all the other earlier solution methods.
Resumo:
In the theoretical treatments of the dynamics of solvation of a newly created ion in a dipolar solvent, the self-motion of the solute is usually ignored. Recently, it has been shown that for a light ion the translational motion of the ion can significantly enhance its own rate of solvation. Therefore, solvation itself may not be the rate determining step in the equilibration. Instead, the rate determining step is the search of the low energy configuration which serves to localize the light ion. In this article a microscopic calculation of the probability distribution of the interaction energy of the nascent charge with the dipolar solvent molecules is presented in order to address this problem of solute trapping. It is found that to a good approximation, this distribution is Gaussian and the second moment of this distribution is exactly equal to the half of its own solvation energy. It is shown that this is in excellent agreement with the simulation results that are available for the model Brownian dipolar lattice and for liquid acetonitrile. If the distortion of the solvent by the ion is negligible then the same relation gives the energy distribution for the solvated ion, with the average centered at the final equilibrium solvation energy. These results are expected to be useful in understanding various chemical processes in dipolar liquids. Another interesting outcome of the present study is a simple dynamic argument that supports Onsager's ''inverse snow-ball'' conjecture of solvation of a light ion. A simple derivation of the semi-phenomenological relation between the solvation time correlation function and the single particle orientation, reported recently by Maroncelli et al. (J. Phys. Chem. 97 (1993) 13), is also presented.
Resumo:
Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the �Single Network Adaptive Critic (SNAC)� is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.
Resumo:
Beavers are often found to be in conflict with human interests by creating nuisances like building dams on flowing water (leading to flooding), blocking irrigation canals, cutting down timbers, etc. At the same time they contribute to raising water tables, increased vegetation, etc. Consequently, maintaining an optimal beaver population is beneficial. Because of their diffusion externality (due to migratory nature), strategies based on lumped parameter models are often ineffective. Using a distributed parameter model for beaver population that accounts for their spatial and temporal behavior, an optimal control (trapping) strategy is presented in this paper that leads to a desired distribution of the animal density in a region in the long run. The optimal control solution presented, imbeds the solution for a large number of initial conditions (i.e., it has a feedback form), which is otherwise nontrivial to obtain. The solution obtained can be used in real-time by a nonexpert in control theory since it involves only using the neural networks trained offline. Proper orthogonal decomposition-based basis function design followed by their use in a Galerkin projection has been incorporated in the solution process as a model reduction technique. Optimal solutions are obtained through a "single network adaptive critic" (SNAC) neural-network architecture.
Resumo:
The importance of long-range prediction of rainfall pattern for devising and planning agricultural strategies cannot be overemphasized. However, the prediction of rainfall pattern remains a difficult problem and the desired level of accuracy has not been reached. The conventional methods for prediction of rainfall use either dynamical or statistical modelling. In this article we report the results of a new modelling technique using artificial neural networks. Artificial neural networks are especially useful where the dynamical processes and their interrelations for a given phenomenon are not known with sufficient accuracy. Since conventional neural networks were found to be unsuitable for simulating and predicting rainfall patterns, a generalized structure of a neural network was then explored and found to provide consistent prediction (hindcast) of all-India annual mean rainfall with good accuracy. Performance and consistency of this network are evaluated and compared with those of other (conventional) neural networks. It is shown that the generalized network can make consistently good prediction of annual mean rainfall. Immediate application and potential of such a prediction system are discussed.
Resumo:
his paper studies the problem of designing a logical topology over a wavelength-routed all-optical network (AON) physical topology, The physical topology consists of the nodes and fiber links in the network, On an AON physical topology, we can set up lightpaths between pairs of nodes, where a lightpath represents a direct optical connection without any intermediate electronics, The set of lightpaths along with the nodes constitutes the logical topology, For a given network physical topology and traffic pattern (relative traffic distribution among the source-destination pairs), our objective is to design the logical topology and the routing algorithm on that topology so as to minimize the network congestion while constraining the average delay seen by a source-destination pair and the amount of processing required at the nodes (degree of the logical topology), We will see that ignoring the delay constraints can result in fairly convoluted logical topologies with very long delays, On the other hand, in all our examples, imposing it results in a minimal increase in congestion, While the number of wavelengths required to imbed the resulting logical topology on the physical all optical topology is also a constraint in general, we find that in many cases of interest this number can be quite small, We formulate the combined logical topology design and routing problem described above (ignoring the constraint on the number of available wavelengths) as a mixed integer linear programming problem which we then solve for a number of cases of a six-node network, Since this programming problem is computationally intractable for larger networks, we split it into two subproblems: logical topology design, which is computationally hard and will probably require heuristic algorithms, and routing, which can be solved by a linear program, We then compare the performance of several heuristic topology design algorithms (that do take wavelength assignment constraints into account) against that of randomly generated topologies, as well as lower bounds derived in the paper.
Monte Carlo simulation of network formation based on structural fragments in epoxy-anhydride systems
Resumo:
A method combining the Monte Carlo technique and the simple fragment approach has been developed for simulating network formation in amine-catalysed epoxy-anhydride systems. The method affords a detailed insight into the nature and composition of the network, showing the distribution of various fragments. It has been used to characterize the network formation in the reaction of the diglycidyl ester of isophthalic acid with hexahydrophthalic anhydride, catalysed by benzyldimethylamine. Pre-gel properties like number and weight distributions and average molecular weights have been calculated as a function of epoxy conversion, leading to a prediction of the gel-point conversion. Analysis of the simulated network further yields other characteristic properties such as concentration of crosslink points, distribution and concentration of elastically active chains, average molecular weight between crosslinks, sol content and mass fraction of pendent chains. A comparison has been made of the properties obtained through simulation with those predicted by the fragment approach alone, which, however, gives only average properties. The Monte Carlo simulation results clearly show that loops and other cyclic structures occur in the gel. This may account for the differences observed between the results of the simulation and the fragment model in the post-gel phase. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
The weighted-least-squares method based on the Gauss-Newton minimization technique is used for parameter estimation in water distribution networks. The parameters considered are: element resistances (single and/or group resistances, Hazen-Williams coefficients, pump specifications) and consumptions (for single or multiple loading conditions). The measurements considered are: nodal pressure heads, pipe flows, head loss in pipes, and consumptions/inflows. An important feature of the study is a detailed consideration of the influence of different choice of weights on parameter estimation, for error-free data, noisy data, and noisy data which include bad data. The method is applied to three different networks including a real-life problem.
Resumo:
This paper presents a new strategy for load distribution in a single-level tree network equipped with or without front-ends. The load is distributed in more than one installment in an optimal manner to minimize the processing time. This is a deviation and an improvement over earlier studies in which the load distribution is done in only one installment. Recursive equations for the general case, and their closed form solutions for a special case in which the network has identical processors and identical links, are derived. An asymptotic analysis of the network performance with respect to the number of processors and the number of installments is carried out. Discussions of the results in terms of some practical issues like the tradeoff relationship between the number of processors and the number of installments are also presented.
Resumo:
With increased number of new services and users being added to the communication network, management of such networks becomes crucial to provide assured quality of service. Finding skilled managers is often a problem. To alleviate this problem and also to provide assistance to the available network managers, network management has to be automated. Many attempts have been made in this direction and it is a promising area of interest to researchers in both academia and industry. In this paper, a review of the management complexities in present day networks and artificial intelligence approaches to network management are presented. Published by Elsevier Science B.V.
Resumo:
A single-source network is said to be memory-free if all of the internal nodes (those except the source and the sinks) do not employ memory but merely send linear combinations of the incoming symbols (received at their incoming edges) on their outgoing edges. Memory-free networks with delay using network coding are forced to do inter-generation network coding, as a result of which the problem of some or all sinks requiring a large amount of memory for decoding is faced. In this work, we address this problem by utilizing memory elements at the internal nodes of the network also, which results in the reduction of the number of memory elements used at the sinks. We give an algorithm which employs memory at all the nodes of the network to achieve single- generation network coding. For fixed latency, our algorithm reduces the total number of memory elements used in the network to achieve single- generation network coding. We also discuss the advantages of employing single-generation network coding together with convolutional network-error correction codes (CNECCs) for networks with unit- delay and illustrate the performance gain of CNECCs by using memory at the intermediate nodes using simulations on an example network under a probabilistic network error model.
Resumo:
The integration of different wireless networks, such as GSM and WiFi, as a two-tier hybrid wireless network is more popular and economical. Efficient bandwidth management, call admission control strategies and mobility management are important issues in supporting multiple types of services with different bandwidth requirements in hybrid networks. In particular, bandwidth is a critical commodity because of the type of transactions supported by these hybrid networks, which may have varying bandwidth and time requirements. In this paper, we consider such a problem in a hybrid wireless network installed in a superstore environment and design a bandwidth management algorithm based on the priority level, classification of the incoming transactions. Our scheme uses a downlink transaction scheduling algorithm, which decides how to schedule the outgoing transactions based on their priority level with efficient use of available bandwidth. The transaction scheduling algorithm is used to maximize the number of transaction-executions. The proposed scheme is simulated in a superstore environment with multi Rooms. The performance results describe that the proposed scheme can considerably improve the bandwidth utilization by reducing transaction blocking and accommodating more essential transactions at the peak time of the business.