64 resultados para Distance de Hofer
Resumo:
There is a lot of pressure on all the developed and second world countries to produce low emission power and distributed generation (DG) is found to be one of the most viable ways to achieve this. DG generally makes use of renewable energy sources like wind, micro turbines, photovoltaic, etc., which produce power with minimum green house gas emissions. While installing a DG it is important to define its size and optimal location enabling minimum network expansion and line losses. In this paper, a methodology to locate the optimal site for a DG installation, with the objective to minimize the net transmission losses, is presented. The methodology is based on the concept of relative electrical distance (RED) between the DG and the load points. This approach will help to identify the new DG location(s), without the necessity to conduct repeated power flows. To validate this methodology case studies are carried out on a 20 node, 66kV system, a part of Karnataka Transco and results are presented.
Resumo:
Layer-wise, distance-dependent orientational relaxation of water confined in reverse micelles (RM) is studied using theoretical and computational tools. We use both a newly constructed ``spins on a ring'' (SOR) Ising-type model (with Shore-Zwanzig rotational dynamics) and atomistic simulations with explicit water. Our study explores the effect of reverse micelle size and role of intermolecular correlations, compromised by the presence of a highly polar surface, on the distance (from the interface) dependence of water relaxation. The ``spins on a ring'' model can capture some aspects of distance dependence of relaxation, such as acceleration of orientational relaxation at intermediate layers. In atomistic simulations, layer-wise decomposition of hydrogen bond formation pattern clearly reveals that hydrogen bond arrangement of water at a certain distance away from the surface can remain frustrated due to the interaction with the polar surface head groups. This layer-wise analysis also reveals the presence of a non-monotonic slow relaxation component which can be attributed to this frustration effect and which is accentuated in small to intermediate size RMs. For large size RMs, the long time component decreases monotonically from the interface to the interior of the RMs with slowest relaxation observed at the interface. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4732095]
Resumo:
We consider a dense, ad hoc wireless network, confined to a small region. The wireless network is operated as a single cell, i.e., only one successful transmission is supported at a time. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organize into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention-based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first motivate that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc wireless network (described above) as a single cell, we study the hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Theta(opt) bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form d(opt)((P) over bar (t)) x Theta(opt) with d(opt) scaling as (P) over bar (t) (1/eta), where (P) over bar (t) is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then provide a simple characterization of the optimal operating point. Simulation results are provided comparing the performance of the optimal strategy derived here with some simple strategies for operating the network.
Resumo:
Suppose G = (V, E) is a simple graph and k is a fixed positive integer. A subset D subset of V is a distance k-dominating set of G if for every u is an element of V. there exists a vertex v is an element of D such that d(G)(u, v) <= k, where d(G)(u, v) is the distance between u and v in G. A set D subset of V is a distance k-paired-dominating set of G if D is a distance k-dominating set and the induced subgraph GD] contains a perfect matching. Given a graph G = (V, E) and a fixed integer k > 0, the MIN DISTANCE k-PAIRED-DOM SET problem is to find a minimum cardinality distance k-paired-dominating set of G. In this paper, we show that the decision version of MIN DISTANCE k-PAIRED-DOM SET iS NP-complete for undirected path graphs. This strengthens the complexity of decision version Of MIN DISTANCE k-PAIRED-DOM SET problem in chordal graphs. We show that for a given graph G, unless NP subset of DTIME (n(0)((log) (log) (n)) MIN DISTANCE k-PAIRED-Dom SET problem cannot be approximated within a factor of (1 -epsilon ) In n for any epsilon > 0, where n is the number of vertices in G. We also show that MIN DISTANCE k-PAIRED-DOM SET problem is APX-complete for graphs with degree bounded by 3. On the positive side, we present a linear time algorithm to compute the minimum cardinality of a distance k-paired-dominating set of a strongly chordal graph G if a strong elimination ordering of G is provided. We show that for a given graph G, MIN DISTANCE k-PAIRED-DOM SET problem can be approximated with an approximation factor of 1 + In 2 + k . In(Delta(G)), where Delta(G) denotes the maximum degree of G. (C) 2012 Elsevier B.V All rights reserved.
Resumo:
The effectiveness of the last-level shared cache is crucial to the performance of a multi-core system. In this paper, we observe and make use of the DelinquentPC - Next-Use characteristic to improve shared cache performance. We propose a new PC-centric cache organization, NUcache, for the shared last level cache of multi-cores. NUcache logically partitions the associative ways of a cache set into MainWays and DeliWays. While all lines have access to the MainWays, only lines brought in by a subset of delinquent PCs, selected by a PC selection mechanism, are allowed to enter the DeliWays. The PC selection mechanism is an intelligent cost-benefit analysis based algorithm that utilizes Next-Use information to select the set of PCs that can maximize the hits experienced in DeliWays. Performance evaluation reveals that NUcache improves the performance over a baseline design by 9.6%, 30% and 33% respectively for dual, quad and eight core workloads comprised of SPEC benchmarks. We also show that NUcache is more effective than other well-known cache-partitioning algorithms.
Resumo:
This paper presents comparative evaluation of the distance relay characteristics for UHV and EHV transmission lines. Distance protection relay characteristics for the EHV and UHV systems are developed using Electromagnetic Transients (EMT) program. The variation of ideal trip boundaries for both the systems are presented. Unlike the conventional distance protection relay which uses a lumped parameter model, this paper uses the distributed parameter model. The effect of larger shunt susceptance on the trip boundaries is highlighted. Performance of distance relay with ideal trip boundaries for EHV and UHV lines have been tested for various fault locations and fault resistances. Electromagnetic Transients (EMT) program has been developed considering distributed parameter line model for simulating the test systems. The voltage and current phasors are computed from the signals using an improved full cycle DFT algorithm taking 20 samples per cycle. Two practical transmission systems of Indian power grid, namely 765 kV UHV transmission line and SREB 24-bus 400kV EHV system are used to test the performance of the proposed approach.
Resumo:
This paper deals with line protection challenges experienced in system having substantial wind generation penetration. Two types of WTGU: Doubly Fed (DFIG) and Squirrel Cage (SCIG) Induction Generators are simulated and connected to grid with single circuit transmission line. The paper summarizes analytical investigations carried out on the impedance seen by distance relays by varying fault resistances and grid short circuit MVA, for the protection of such transmission lines during faults. The results are also compared with systems having conventional synchronous machine connected to the grid.
Resumo:
Given a metric space with a Borel probability measure, for each integer N, we obtain a probability distribution on N x N distance matrices by considering the distances between pairs of points in a sample consisting of N points chosen independently from the metric space with respect to the given measure. We show that this gives an asymptotically bi-Lipschitz relation between metric measure spaces and the corresponding distance matrices. This is an effective version of a result of Vershik that metric measure spaces are determined by associated distributions on infinite random matrices.
Resumo:
We apply to total cross-sections our model for soft gluon resummation in the infrared region. The model aims to probe large distance interactions in QCD. Our ansatz for an effective coupling for gluons and quarks in the infrared region follows an inverse power law which is singular but integrable. In the context of an eikonal formalism with QCD mini-jets, we study total hadronic cross-sections for protons, pions, photons. We estimate the total inelastic cross-section at LHC comparing with recent measurements and update previous results for survival probability.
Resumo:
There have been attempts at obtaining robust guidance laws to ensure zero miss distance (ZMD) for interceptors with parametric uncertainties. All these laws require the plant to be of minimum phase type to enable the overall guidance loop transfer function to satisfy strict positive realness (SPR). The SPR property implies absolute stability of the closed loop system, and has been shown in the literature to lead to ZMD because it avoids saturation of lateral acceleration. In these works higher order interceptors are reduced to lower order equivalent models for which control laws are designed to ensure ZMD. However, it has also been shown that when the original system with right half plane (RHP) zeros is considered, the resulting miss distances, using such strategies, can be quite high. In this paper, an alternative approach using the circle criterion establishes the conditions for absolute stability of the guidance loop and relaxes the conservative nature of some earlier results arising from assumption of in�nite engagement time. Further, a feedforward scheme in conjunction with a lead-lag compensator is used as one control strategy while a generalized sampled hold function is used as a second strategy, to shift the RHP transmission zeros, thereby achieving ZMD. It is observed that merely shifting the RHP zero(s) to the left half plane reduces miss distances signi�cantly even when no additional controllers are used to ensure SPR conditions.
Resumo:
The effect of structure height on the lightning striking distance is estimated using a lightning strike model that takes into account the effect of connecting leaders. According to the results, the lightning striking distance may differ significantly from the values assumed in the IEC standard for structure heights beyond 30m. However, for structure heights smaller than about 30m, the results show that the values assumed by IEC do not differ significantly from the predictions based on a lightning attachment model taking into account the effect of connecting leaders. However, since IEC assumes a smaller striking distance than the ones predicted by the adopted model one can conclude that the safety is not compromised in adhering to the IEC standard. Results obtained from the model are also compared with Collection Volume Method (CVM) and other commonly used lightning attachment models available in the literature. The results show that in the case of CVM the calculated attractive distances are much larger than the ones obtained using the physically based lightning attachment models. This indicates the possibility of compromising the lightning protection procedures when using CVM. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The self-organized motion of vast numbers of creatures in a single direction is a spectacular example of emergent order. Here, we recreate this phenomenon using actuated nonliving components. We report here that millimetre-sized tapered rods, rendered motile by contact with an underlying vibrated surface and interacting through a medium of spherical beads, undergo a phase transition to a state of spontaneous alignment of velocities and orientations above a threshold bead area fraction. Guided by a detailed simulation model, we construct an analytical theory of this flocking transition, with two ingredients: a moving rod drags beads; neighbouring rods reorient in the resulting flow like a weathercock in the wind. Theory and experiment agree on the structure of our phase diagram in the plane of rod and bead concentrations and power-law spatial correlations near the phase boundary. Our discovery suggests possible new mechanisms for the collective transport of particulate or cellular matter.