64 resultados para Diarrhea Viruses, Bovine Viral


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potyviruses temporally regulate their protein function by polyprotein processing. Previous studies have shown that VPg (Viral Protein genome-linked) of Pepper vein banding virus interacts with the NIa-Pro (Nuclear Inclusion-a protease) domain, and modulates the kinetics of the protease. In the present study, we report for the first time that VPg harbors the Walker motifs A and B, and the presence of NIa-Pro, especially in cis (cleavage site (E191A) VPg-Pro mutant), is essential for manifestation of the ATPase activity. Mutation of Lys47 (Walker motif A) and Asp88:Glu89 (Walker motif B) to alanine in E191A VPg-Pro lead to reduced ATPase activity, confirming that this activity was inherent to VPg. We propose that potyviral VPg, established as an intrinsically disordered domain, undergoes plausible structural alterations upon interaction with globular NIa-Pro which induces the ATPase activity. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Peste-des-petits ruminants virus (PPRV) is a non segmented negative strand RNA virus of the genus Morbillivirus within Paramyxoviridae family. Negative strand RNA viruses are known to carry nucleocapsid (N) protein, phospho (P) protein and RNA polymerase (L protein) packaged within the virion which possess all activities required for transcription, post-transcriptional modification of mRNA and replication. In order to understand the mechanism of transcription and replication of the virus, an in vitro transcription reconstitution system is required. In the present work, an in vitro transcription system has been developed with ribonucleoprotein (RNP) complex purified from virus infected cells as well as partially purified recombinant polymerase (L-P) complex from insect cells along with N-RNA (genomic RNA encapsidated by N protein) template isolated from virus infected cells. Results: RNP complex isolated from virus infected cells and recombinant L-P complex purified from insect cells was used to reconstitute transcription on N-RNA template. The requirement for this transcription reconstitution has been defined. Transcription of viral genes in the in vitro system was confirmed by PCR amplification of cDNAs corresponding to individual transcripts using gene specific primers. In order to measure the relative expression level of viral transcripts, real time PCR analysis was carried out. qPCR analysis of the transcription products made in vitro showed a gradient of polarity of transcription from 3' end to 5' end of the genome similar to that exhibited by the virus in infected cells. Conclusion: This report describes for the first time, the development of an in vitro transcription reconstitution system for PPRV with RNP complex purified from infected cells and recombinant L-P complex expressed in insect cells. Both the complexes were able to synthesize all the mRNA species in vitro, exhibiting a gradient of polarity in transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information diffusion and influence maximization are important and extensively studied problems in social networks. Various models and algorithms have been proposed in the literature in the context of the influence maximization problem. A crucial assumption in all these studies is that the influence probabilities are known to the social planner. This assumption is unrealistic since the influence probabilities are usually private information of the individual agents and strategic agents may not reveal them truthfully. Moreover, the influence probabilities could vary significantly with the type of the information flowing in the network and the time at which the information is propagating in the network. In this paper, we use a mechanism design approach to elicit influence probabilities truthfully from the agents. Our main contribution is to design a scoring rule based mechanism in the context of the influencer-influencee model. In particular, we show the incentive compatibility of the mechanisms and propose a reverse weighted scoring rule based mechanism as an appropriate mechanism to use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microglia are the resident macrophage-like populations in the central nervous system (CNS). Microglia remain quiescent, unable to perform effector and antigen presentation (APC) functions until activated by injury or infection, and have been suggested to represent the first line of defence for the CNS. Previous studies demonstrated that microglia can be persistently infected by neurotropic mouse hepatitis virus (MHV) which causes meningoencephalitis, myelitis with subsequent axonal loss, and demyelination and serve as a virus-induced model of human neurological disease multiple sclerosis (MS). Current studies revealed that MHV infection is associated with the pronounced activation of microglia during acute inflammation, as evidenced by characteristic changes in cellular morphology and increased expression of microglia-specific proteins, Iba1 (ionized calcium-binding adaptor molecule 1), which is a macrophage/microglia-specific novel calcium-binding protein and involved in membrane ruffling and phagocytosis. During chronic inflammation (day 30 postinfection), microglia were still present within areas of demyelination. Experiments performed in ex vivo spinal cord slice culture and in vitro neonatal microglial culture confirmed direct microglial infection. Our results suggest that MHV can directly infect and activate microglia during acute inflammation, which in turn during chronic inflammation stage causes phagocytosis of myelin sheath leading to chronic inflammatory demyelination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A causative agent in approximately 40% of diarrhea] cases. still remains unidentified. Though many enteroviruses (EVs) are transmitted through fecal-oral route and replicate in the intestinal cells, their association with acute diarrhea has not so far been recognized due to lack of detailed epidemiological investigations. This long-term, detailed molecular epidemiological study aims to conclusively determine the association of non-polio enteroviruses (NPEVs) with acute diarrhea in comaparison with rotavirus (RV) in children. Diarrheal stool specimens from 2161 children aged 0-2 years and 169 children between 2 and 9 years, and 1800 normal stool samples from age-matched healthy children between 0 and 9 years were examined during 2008-2012 for enterovirus (oral polio vaccine strains (OPVs) and NPEVs). Enterovirus serotypes were identified by complete VP1 gene sequence analysis. Enterovirus and rotavirus were detected in 19.01% (380/2330) and 13.82% (322/2330) diarrheal stools. During the study period, annual prevalence of EV- and RV-associated diarrhea ranged between 8% and 22%, but with contrasting seasonal prevalence with RV predominating during winter months and NPEV prevailing in other seasons. NPEVs are associated with epidemics-like outbreaks during which they are detected in up to 50% of diarrheic children, and in non-epidemic seasons in 0-10% of the patients. After subtraction of OPV-positive diarrheal cases (1.81%), while NPEVs are associated with about 17% of acute diarrhea, about 6% of healthy children showed asymptomatic NPEV excretion. Of 37 NPEV serotypes detected in diarrheal children, seven echovirus types 1, 7, 11, 13, 14, 30 and 33 are frequently observed, with Ell being more prevalent followed by E30. In conclusion, NPEVs are significantly associated with acute diarrhea, and NPEVs and rotavirus exhibit contrasting seasonal predominance. This study signifies the need for a new direction of research on enteroviruses involving systematic analysis of their contribution to diarrheal burden. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research paper presents the first results on the protein adsorption and release kinetics and in vitro biodegradability of cryogenically cured hydroxyapatite-gelatin based micro/macroporous scaffolds (CHAMPS). While the adsorption and release of bovine serum albumin (BSA) protein exhibits steady state behavior over an incubation period of up to 10 days, Fourier transform infrared (FT-IR) analysis importantly confirms the absence of any change in the secondary structure of BSA proteins due to interaction with the CHAMPS scaffold. The compression properties of the CHAMPS scaffold with interconnected porosity (pore size similar to 50-200 mm) is characterized by a non-linear stress-strain response with a strength close to 5 MPa and a maximum strain of up to 24%. The slow but systematic increase in weight loss over a period of 7 days as well as apatite layer formation indicates its good bioactivity. The extensive micro-computed tomography (micro-CT) analysis establishes cancellous bone-like highly interconnected and complex porous architecture of the CHAMPS scaffold. Importantly, the excellent adsorption (up to 50%) and release (up to 60% of adsorbed protein) of BSA has been uniquely attributed to the inherent porous microstructure of the CHAMPS scaffold. Overall, the present study provides an assessment of the interaction of protein with the gelatin-hydroxyapatite macroporous scaffold in vitro, as well as reporting for the first time the efficacy of such scaffolds to release 60% of BSA loaded onto the scaffold in vitro, which is significantly higher than earlier literature reports.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damaged articulating joints can be repaired or replaced with synthetic biomaterials, which can release wear debris due to articulation, leading to the osteolysis. In a recent work, it has been shown that it is possible to achieve a better combination of flexural strength/fracture toughness as well as in vitro bioactivity and cytocompatibility properties in spark plasma sintered hydroxyapatite-titanium (HA-Ti) composites. Although hydroxyapatite and titanium are well documented for their good biocompatibility, nanosized hydroxyapatite (HA) and titanium (Ti) particles can cause severe toxicity to cells. In order to address this issue, fretting wear study of HA-Ti composites under dry and wet (1x SBF, supplemented with 5 g l(-1) bovine serum albumin (BSA)) condition was performed to assess the wear resistance as well as wear debris formation, in vitro. The experimental results reveal one order of magnitude lower wear rate for HA-10 wt% Ti (7.5 x 10(-5) mm(3) N-1 m(-1)) composite than monolithic HA (3.9 x 10(-4) mm(3) N-1 m(-1)) in simulated body fluid. The difference in the tribological properties has been analyzed in the light of phase assemblages and mechanical properties. Overall, the results suggest the potential use of HA-Ti composites over existing HA-based biocomposites in orthopedic as well as dental applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arterial walls have a regular and lamellar organization of elastin present as concentric fenestrated networks in the media. In contrast, elastin networks are longitudinally oriented in layers adjacent to the media. In a previous model exploring the biomechanics of arterial elastin, we had proposed a microstructurally motivated strain energy function modeled using orthotropic material symmetry. Using mechanical experiments, we showed that the neo-Hookean term had a dominant contribution to the overall form of the strain energy function. In contrast, invariants corresponding to the two fiber families had smaller contributions. To extend these investigations, we use biaxial force-controlled experiments to quantify regional variations in the anisotropy and nonlinearity of elastin isolated from bovine aortic tissues proximal and distal to the heart. Results from this study show that tissue nonlinearity significantly increases distal to the heart as compared to proximally located regions (). Distally located samples also have a trend for increased anisotropy (), with the circumferential direction stiffer than the longitudinal, as compared to an isotropic and relatively linear response for proximally located elastin samples. These results are consistent with the underlying tissue histology from proximally located samples that had higher optical density (), fiber thickness (), and trend for lower tortuosity () in elastin fibers as compared to the thinner and highly undulating elastin fibers isolated from distally located samples. Our studies suggest that it is important to consider elastin fiber orientations in investigations that use microstructure-based models to describe the contributions of elastin and collagen to arterial mechanics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a recent Nature paper, Hashem et al. attempted to probe deeper into the elusive role of eIF3 in translation initiation of viruses with hepatitis C virus-like internal ribosome entry sites (IRESs), but instead uncovered a surprising role of these IRESs in displacing eIF3 from the 40S subunit, favoring viral translation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The viral phenomenon has garnered a great deal of attention in the recent years. Although evidence of viral success exists the underlying factors leading to the phenomenon and its measurement still remains a grey area which needs to be explored. The viral phenomenon for a product or information and its distinction based on growth curve trajectory has not been rigorously explored in the previous works. This paper aims to understand the viral phenomenon that makes products or information go viral. The viral phenomenon trajectories that distinguish the viral from a non-viral phenomenon are demonstrated. The curve fitting methodology for viral phenomenon is adopted which has not been looked into in the previous works. TED talks are analyzed to understand the diffusion pattern, essentially one or more spike, within a time period. Insights drawn indicate the characteristic viral growth trajectories and its implication on innovation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant viruses exploit the host machinery for targeting the viral genome-movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein la (PDLP la) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER-GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER-GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130-138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm interacts with NP via its N-terminal unfolded region and the NSm-NP complex could in turn interact with the ER membrane via the C-terminal coiled coil domain of NSm to form vesicles that are targeted to PD and there by assist the cell to cell movement of the viral genome complex. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seasonal epidemics caused by influenza A (H1 and H3 subtypes) and B viruses are a major global health threat. The traditional, trivalent influenza vaccines have limited efficacy because of rapid antigenic evolution of the circulating viruses. This antigenic variability mediates viral escape from the host immune responses, necessitating annual vaccine updates. Influenza vaccines elicit a protective antibody response, primarily targeting the viral surface glycoprotein hemagglutinin (HA). However, the predominant humoral response is against the hypervariable head domain of HA, thereby restricting the breadth of protection. In contrast, the conserved, subdominant stem domain of HA is a potential ``universal'' vaccine candidate. We designed an HA stem-fragment immunogen from the 1968 pandemic H3N2 strain (A/Hong Kong/1/68) guided by a comprehensive H3 HA sequence conservation analysis. The biophysical properties of the designed immunogen were further improved by C-terminal fusion of a trimerization motif, ``isoleucine-zipper'', or ``foldon''. These immunogens elicited cross-reactive, antiviral antibodies and conferred partial protection against a lethal, homologous HK68 virus challenge in vivo. Furthermore, bacterial expression of these immunogens is economical and facilitates rapid scale-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viral capsids derived from an icosahedral plant virus widely used in physical and nanotechnological investigations were fully dissociated into dimers by a rapid change of pH. The process was probed in vitro at high spatiotemporal resolution by time-resolved small-angle X-ray scattering using a high brilliance synchrotron source. A powerful custom-made global fitting algorithm allowed us to reconstruct the most likely pathway parametrized by a set of stoichiometric coefficients and to determine the shape of two successive intermediates by ab initio calculations. None of these two unexpected intermediates was previously identified in self-assembly experiments, which suggests that the disassembly pathway is not a mirror image of the assembly pathway. These findings shed new light on the mechanisms and the reversibility of the assembly/disassembly of natural and synthetic virus-based systems. They also demonstrate that both the structure and dynamics of an increasing number of intermediate species become accessible to experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have recently reported significant association of non-polio enteroviruses (NPEVs) with acute and persistent diarrhea (18-21% of total diarrheal cases), and non-diarrheal Increased Frequency of Bowel Movements (IFoBM-ND) (about 29% of the NPEV infections) in children and that the NPEV-associated diarrhea was as significant as rotavirus diarrhea. However, their diarrhea-causing potential is yet to be demonstrated in an animal model system. Since the determination of virus titers by the traditional plaque assay takes 4-7 days, there is a need for development of a rapid method for virus titer determination to facilitate active clinical research on enterovirus-associated diarrhea. The goal of this study is to develop a cell-based rapid detection and enumeration method and to demonstrate the diarrhea-inducing potential of purified and characterized non-polio enteroviruses, which were isolated from diarrheic children. Here we describe generation of monoclonal and polyclonal antibodies against purified strains belonging to different serotypes, and development of an enzyme-linked immuno focus assay (ELIFA) for detection and enumeration of live NPEV particles in clinical and purified virus samples, and a newborn mouse model for NPEV diarrhea. Plaque-purified NPVEs, belonging to different serotypes, isolated from children with diarrhea, were grown in cell culture and purified by isopycnic CsCl density gradient centrifugation. By ELIFA, NPEVs could be detected and enumerated within 12 h post-infection. Our results demonstrated that Coxsackievirus B1 (CVB1) and CVB5 strains, isolated from diarrheic children, induced severe diarrhea in orally-inoculated 9-12 day-old mouse pups, fulfilling Koch's postulates. The methods described here would facilitate studies on NPEV-associated gastrointestinal disease. (C) 2015 Elsevier B.V. All rights reserved.