135 resultados para Desiring machines
Resumo:
Effects of large deformation and inelasticity are considered in formulating the behavior of columns of variable cross section subjected to an axial compressive load. Simple, approximate methods are used to obtain numerical results. The combined effect of the nonlinearities is shown to be of a hardening type for small column deflections
Resumo:
Noncontact method of sensing accurately the magnitude and direction of displacements is essential in systems such as the numerically controlled machines. A displacement transducer, using Moiré transmission gratings is described. The notable feature of this instrument is that it requires only gratings of small lengths, even for measurement of large displacements.
Resumo:
A study of vibrations of multifiber composite shells is presented. Special attention is paid to the effect of composition of different fibers on the frequency spectrum of a freely vibrating cylindrical shell. The numerical results indicate clustering of frequency spectrum of a freely vibrating cylindrical composite shell as compared with the isotropic shell, and the spectrum varies considerably with the composition of the constituent materials.
Resumo:
Although various strategies have been developed for scheduling parallel applications with independent tasks, very little work exists for scheduling tightly coupled parallel applications on cluster environments. In this paper, we compare four different strategies based on performance models of tightly coupled parallel applications for scheduling the applications on clusters. In addition to algorithms based on existing popular optimization techniques, we also propose a new algorithm called Box Elimination that searches the space of performance model parameters to determine the best schedule of machines. By means of real and simulation experiments, we evaluated the algorithms on single cluster and multi-cluster setups. We show that our Box Elimination algorithm generates up to 80% more efficient schedule than other algorithms. We also show that the execution times of the schedules produced by our algorithm are more robust against the performance modeling errors.
Resumo:
Study of the evolution of species or organisms is essential for various biological applications. Evolution is typically studied at the molecular level by analyzing the mutations of DNA sequences of organisms. Techniques have been developed for building phylogenetic or evolutionary trees for a set of sequences. Though phylogenetic trees capture the overall evolutionary relationships among the sequences, they do not reveal fine-level details of the evolution. In this work, we attempt to resolve various fine-level sequence transformation details associated with a phylogenetic tree using cellular automata. In particular, our work tries to determine the cellular automata rules for neighbor-dependent mutations of segments of DNA sequences. We also determine the number of time steps needed for evolution of a progeny from an ancestor and the unknown segments of the intermediate sequences in the phylogenetic tree. Due to the existence of vast number of cellular automata rules, we have developed a grid system that performs parallel guided explorations of the rules on grid resources. We demonstrate our techniques by conducting experiments on a grid comprising machines in three countries and obtaining potentially useful statistics regarding evolutions in three HIV sequences. In particular, our work is able to verify the phenomenon of neighbor-dependent mutations and find that certain combinations of neighbor-dependent mutations, defined by a cellular automata rule, occur with greater than 90% probability. We also find the average number of time steps for mutations for some branches of phylogenetic tree over a large number of possible transformations with standard deviations less than 2.
Resumo:
This paper gives a new iterative algorithm for kernel logistic regression. It is based on the solution of a dual problem using ideas similar to those of the Sequential Minimal Optimization algorithm for Support Vector Machines. Asymptotic convergence of the algorithm is proved. Computational experiments show that the algorithm is robust and fast. The algorithmic ideas can also be used to give a fast dual algorithm for solving the optimization problem arising in the inner loop of Gaussian Process classifiers.
Resumo:
This paper makes explicit the relation between relative part position and kinematic freedom of the parts which is implicitly available in the literature. An extensive set of representative papers in the areas of assembly and kinematic modelling is reviewed to specifically identify how the ideas in the two areas are related and influencing the development of each other. The papers are categorised by the approaches followed in the specification, representation, and solution of the part relations. It is observed that the extent of the part geometry is not respected in modelling schemes and as a result, the causal flow of events (proximity–contact–mobility) during the assembling process is not realised in the existing modelling paradigms, which are focusing on either the relative positioning problem or the relative motion problem. Though an assembly is a static description of part configuration, achievement of this configuration requires availability of relative motion for bringing parts together during the assembly process. On the other hand, the kinematic freedom of a part depends on the nature of contacting regions with other parts in its static configuration. These two problems are thus related through the contact geometry. The chronology of the approaches that significantly contributed to the development of the subject is also included in the paper.
Resumo:
This paper aims at evaluating the methods of multiclass support vector machines (SVMs) for effective use in distance relay coordination. Also, it describes a strategy of supportive systems to aid the conventional protection philosophy in combating situations where protection systems have maloperated and/or information is missing and provide selective and secure coordinations. SVMs have considerable potential as zone classifiers of distance relay coordination. This typically requires a multiclass SVM classifier to effectively analyze/build the underlying concept between reach of different zones and the apparent impedance trajectory during fault. Several methods have been proposed for multiclass classification where typically several binary SVM classifiers are combined together. Some authors have extended binary SVM classification to one-step single optimization operation considering all classes at once. In this paper, one-step multiclass classification, one-against-all, and one-against-one multiclass methods are compared for their performance with respect to accuracy, number of iterations, number of support vectors, training, and testing time. The performance analysis of these three methods is presented on three data sets belonging to training and testing patterns of three supportive systems for a region and part of a network, which is an equivalent 526-bus system of the practical Indian Western grid.
Resumo:
A fast algorithm for the computation of maximum compatible classes (mcc) among the internal states of an incompletely specified sequential machine is presented in this paper. All the maximum compatible classes are determined by processing compatibility matrices of progressingly diminishing order, whose total number does not exceed (p + m), where p is the largest cardinality among these classes, and m is the number of such classes. Consequently the algorithm is specially suitable for the state minimization of very large sequential machines as encountered in vlsi circuits and systems.
Resumo:
This paper presents a new approach to the location of fault in the high voltage power transmission system using Support Vector Machines (SVMs). A knowledge base is developed using transient stability studies for apparent impedance swing trajectory in the R-X plane. SVM technique is applied to identify the fault location in the system. Results are presented on sample 3-power station, a 9-bus system illustrate the implementation of the proposed method.
Resumo:
Clustered architecture processors are preferred for embedded systems because centralized register file architectures scale poorly in terms of clock rate, chip area, and power consumption. Although clustering helps by improving clock speed, reducing energy consumption of the logic, and making the design simpler, it introduces extra overheads by way of inter-cluster communication. This communication happens over long global wires which leads to delay in execution and significantly high energy consumption.In this paper, we propose a new instruction scheduling algorithm that exploits scheduling slacks of instructions and communication slacks of data values together to achieve better energy-performance trade-offs for clustered architectures with heterogeneous interconnect. Our instruction scheduling algorithm achieves 35% and 40% reduction in communication energy, whereas the overall energy-delay product improves by 4.5% and 6.5% respectively for 2 cluster and 4 cluster machines with marginal increase (1.6% and 1.1%) in execution time. Our test bed uses the Trimaran compiler infrastructure.
Resumo:
Conventional three-dimensional isoparametric elements are susceptible to problems of locking when used to model plate/shell geometries or when the meshes are distorted etc. Hybrid elements that are based on a two-field variational formulation are immune to most of these problems, and hence can be used to efficiently model both "chunky" three-dimensional and plate/shell type structures. Thus, only one type of element can be used to model "all" types of structures, and also allows us to use a standard dual algorithm for carrying out the topology optimization of the structure. We also address the issue of manufacturability of the designs.
Resumo:
The notion of optimization is inherent in protein design. A long linear chain of twenty types of amino acid residues are known to fold to a 3-D conformation that minimizes the combined inter-residue energy interactions. There are two distinct protein design problems, viz. predicting the folded structure from a given sequence of amino acid monomers (folding problem) and determining a sequence for a given folded structure (inverse folding problem). These two problems have much similarity to engineering structural analysis and structural optimization problems respectively. In the folding problem, a protein chain with a given sequence folds to a conformation, called a native state, which has a unique global minimum energy value when compared to all other unfolded conformations. This involves a search in the conformation space. This is somewhat akin to the principle of minimum potential energy that determines the deformed static equilibrium configuration of an elastic structure of given topology, shape, and size that is subjected to certain boundary conditions. In the inverse-folding problem, one has to design a sequence with some objectives (having a specific feature of the folded structure, docking with another protein, etc.) and constraints (sequence being fixed in some portion, a particular composition of amino acid types, etc.) while obtaining a sequence that would fold to the desired conformation satisfying the criteria of folding. This requires a search in the sequence space. This is similar to structural optimization in the design-variable space wherein a certain feature of structural response is optimized subject to some constraints while satisfying the governing static or dynamic equilibrium equations. Based on this similarity, in this work we apply the topology optimization methods to protein design, discuss modeling issues and present some initial results.
Resumo:
In the recent past it has been found that HVDC transmission systems and turbine-generator shaft torsional dynamics can interact in an unfavourable manner. This paper presents a detailed linearised state space model of AC/DC system to study this torsional interaction. The model developed is used to study the effect of various system parameters, such as, dc line loading, converter firing angle, the firing scheme employed. The results obtained are compared with those given in[3].
Resumo:
A novel method to account for the transmission line resistances in structure preserving energy functions (SPEF) is presented in this paper. The method exploits the equivalence of a lossy network having the same conductance to susceptance ratio for all its elements to a lossless network with a new set of power injections. The system equations and the energy function are developed using centre of inertia (COI) variables and the loads are modelled as arbitrary functions of respective bus voltages. The application of SPEF to direct transient stability evaluation is presented considering a realistic power system example.