129 resultados para Decoding
Resumo:
In this paper, an achievable rate region for the three-user discrete memoryless interference channel with asymmetric transmitter cooperation is derived. The three-user channel facilitates different ways of message sharing between the transmitters. We introduce a manner of noncausal (genie aided) unidirectional message-sharing, which we term cumulative message sharing. We consider receivers with predetermined decoding capabilities, and define a cognitive interference channel. We then derive an achievable rate region for this channel by employing a coding scheme which is a combination of superposition and Gel'fand-Pinsker coding techniques.
Resumo:
Run-time interoperability between different applications based on H.264/AVC is an emerging need in networked infotainment, where media delivery must match the desired resolution and quality of the end terminals. In this paper, we describe the architecture and design of a polymorphic ASIC to support this. The H.264 decoding flow is partitioned into modules, such that the polymorphic ASIC meets the design goals of low-power, low-area, high flexibility, high throughput and fast interoperability between different profiles and levels of H.264. We demonstrate the idea with a multi-mode decoder that can decode baseline, main and high profile H.264 streams and can interoperate at run.time across these profiles. The decoder is capable of processing frame sizes of up to 1024 times 768 at 30 fps. The design synthesized with UMC 0.13 mum technology, occupies 250 k gates and runs at 100 MHz.
Resumo:
We consider a single-hop data-gathering sensor network, consisting of a set of sensor nodes that transmit data periodically to a base-station. We are interested in maximizing the lifetime of this network. With our definition of network lifetime and the assumption that the radio transmission energy consumption forms the most significant portion of the total energy consumption at a sensor node, we attempt to enhance the network lifetime by reducing the transmission energy budget of sensor nodes by exploiting three system-level opportunities. We pose the problem of maximizing lifetime as a max-min optimization problem subject to the constraint of successful data collection and limited energy supply at each node. This turns out to be an extremely difficult optimization to solve. To reduce the complexity of this problem, we allow the sensor nodes and the base-station to interactively communicate with each other and employ instantaneous decoding at the base-station. The chief contribution of the paper is to show that the computational complexity of our problem is determined by the complex interplay of various system-level opportunities and challenges.
Resumo:
Design criteria and full-diversity Distributed Space Time Codes (DSTCs) for the two phase transmission based cooperative diversity protocol of Jing-Hassibi and the Generalized Nonorthogonal Amplify and Forward (GNAF) protocol are reported, when the relay nodes are assumed to have knowledge of the phase component of the source to relay channel gains. It is shown that this under this partial channel state information (CSI), several well known space time codes for the colocated MIMO (Multiple Input Multiple Output) channel become amenable for use as DSTCs. In particular, the well known complex orthogonal designs, generalized coordinate interleaved orthogonal designs (GCIODs) and unitary weight single symbol decodable (UW-SSD) codes are shown to satisfy the required design constraints for DSTCs. Exploiting the relaxed code design constraints, we propose DSTCs obtained from Clifford Algebras which have low ML decoding complexity.
Resumo:
We consider a dense, ad hoc wireless network confined to a small region, such that direct communication is possible between any pair of nodes. The physical communication model is that a receiver decodes the signal from a single transmitter, while treating all other signals as interference. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organise into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first argue that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc network (described above) as a single cell, we study the optimal hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Theta(opt) bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form d(opt)((P) over bar (t)) x Theta(opt) with d(opt) scaling as (P) over bar (1/eta)(t), where (P) over bar (t) is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then provide a simple characterisation of the optimal operating point.
Resumo:
Space-time codes from complex orthogonal designs (CODs) with no zero entries offer low Peak to Average power ratio (PAPR) and avoid the problem of turning off antennas. But CODs for 2(a) antennas with a + 1 complex variables, with no zero entries are not known in the literature for a >= 4. In this paper, a method of obtaining no zero entry (NZE) codes, called Complex Partial-Orthogonal Designs (CPODs), for 2(a+1) antennas whenever a certain type of NZE code exists for 2(a) antennas is presented. This is achieved with slight increase in the ML decoding complexity for regular QAM constellations and no increase for other complex constellations. Since NZE CODs have been constructed recently for 8 antennas our method leads to NZE CPODs for 16 antennas. Moreover, starting from certain NZE CPODs for n antennas, a construction procedure is given to obtain NZE CPODs for 2n antennas. The class of CPODs do not offer full-diversity for all complex constellations. For the NZE CPODs presented in the paper, conditions on the signal sets which will guarantee full-diversity are identified. Simulations results show that bit error performance of our codes under average power constraint is same as that of the CODs and superior to CODs under peak power constraint.
Resumo:
Multicode operation in space-time block coded (STBC) multiple input multiple output (MIMO) systems can provide additional degrees of freedom in code domain to achieve high data rates. In such multicode STBC systems, the receiver experiences code domain interference (CDI) in frequency selective fading. In this paper, we propose a linear parallel interference cancellation (LPIC) approach to cancel the CDI in multicode STBC in frequency selective fading. The proposed detector first performs LPIC followed by STBC decoding. We evaluate the bit error performance of the detector and show that it effectively cancels the CDI and achieves improved error performance. Our results further illustrate how the combined effect of interference cancellation, transmit diversity, and RAKE diversity affect the bit error performance of the system.
Resumo:
Zero entries in complex orthogonal designs (CODs) impede their practical implementation. In this paper, a method of obtaining a no zero entry (NZE) code for 2(k+1) antennas whenever a NZE code exists for 2(k) antennas is presented. This is achieved with slight increase in the ML decoding complexity for regular QAM constellations and no increase for other complex constellations. Since NZE CODs have been constructed recently for 8 antennas our method leads to NZE codes for 16 antennas. Simulation results show good performance of our new codes compared to the well known constructions for 16 and 32 antennas under peak power constraints.
Resumo:
Differential Unitary Space-Time Block codes (STBCs) offer a means to communicate on the Multiple Input Multiple Output (MIMO) channel without the need for channel knowledge at both the transmitter and the receiver. Recently Yuen-Guan-Tjhung have proposed Single-Symbol-Decodable Differential Space-Time Modulation based on Quasi-Orthogonal Designs (QODs) by replacing the original unitary criterion by a scaled unitary criterion. These codes were also shown to perform better than differential unitary STBCs from Orthogonal Designs (ODs). However the rate (as measured in complex symbols per channel use) of the codes of Yuen-Guan-Tjhung decay as the number of transmit antennas increase. In this paper, a new class of differential scaled unitary STBCs for all even number of transmit antennas is proposed. These codes have a rate of 1 complex symbols per channel use, achieve full diversity and moreover they are four-group decodable, i.e., the set of real symbols can be partitioned into four groups and decoding can be done for the symbols in each group separately. Explicit construction of multidimensional signal sets that yield full diversity for this new class of codes is also given.
Resumo:
Space-time block codes (STBCs) obtained from non-square complex orthogonal designs are bandwidth efficient compared to those from square real/complex orthogonal designs for colocated coherent MIMO systems and has other applications in (i) non-coherent MIMO systems with non-differential detection, (ii) Space-Time-Frequency codes for MIMO-OFDM systems and (iii) distributed space-time coding for relay channels. Liang (IEEE Trans. Inform. Theory, 2003) has constructed maximal rate non-square designs for any number of antennas, with rates given by [(a+1)/(2a)] when number of transmit antennas is 2a-1 or 2a. However, these designs have large delays. When large number of antennas are considered this rate is close to 1/2. Tarokh et al (IEEE Trans. Inform. Theory, 1999) have constructed rate 1/2 non-square CODs using the rate-1 real orthogonal designs for any number of antennas, where the decoding delay of these codes is less compared to the codes constructed by Liang for number of transmit antennas more than 5. In this paper, we construct a class of rate-1/2 codes for arbitrary number of antennas where the decoding delay is reduced by 50% when compared with the rate-1/2 codes given by Tarokh et al. It is also shown that even though scaling the variables helps to lower the delay it can not be used to increase the rate.
Resumo:
The problem of constructing space-time (ST) block codes over a fixed, desired signal constellation is considered. In this situation, there is a tradeoff between the transmission rate as measured in constellation symbols per channel use and the transmit diversity gain achieved by the code. The transmit diversity is a measure of the rate of polynomial decay of pairwise error probability of the code with increase in the signal-to-noise ratio (SNR). In the setting of a quasi-static channel model, let n(t) denote the number of transmit antennas and T the block interval. For any n(t) <= T, a unified construction of (n(t) x T) ST codes is provided here, for a class of signal constellations that includes the familiar pulse-amplitude (PAM), quadrature-amplitude (QAM), and 2(K)-ary phase-shift-keying (PSK) modulations as special cases. The construction is optimal as measured by the rate-diversity tradeoff and can achieve any given integer point on the rate-diversity tradeoff curve. An estimate of the coding gain realized is given. Other results presented here include i) an extension of the optimal unified construction to the multiple fading block case, ii) a version of the optimal unified construction in which the underlying binary block codes are replaced by trellis codes, iii) the providing of a linear dispersion form for the underlying binary block codes, iv) a Gray-mapped version of the unified construction, and v) a generalization of construction of the S-ary case corresponding to constellations of size S-K. Items ii) and iii) are aimed at simplifying the decoding of this class of ST codes.
Resumo:
Use of precoding transforms such as Hadamard Transforms and Phase Alteration for Peak to Average Power Ratio (PAPR) reduction in OFDM systems are well known. In this paper we propose use of Inverse Discrete Fourier Transform (IDFT) and Hadamard transform as precoding transforms in MIMO-OFDM systems to achieve low peak to average power ratio (PAPR). We show that while our approach using IDFT does not disturb the diversity gains of the MIMO-OFDM systems (spatial, temporal and frequency diversity gains), it offers a better trade-off between PAPR reduction and ML decoding complexity compared to that of the Hadamard transform precoding. We study in detail the amount of PAPR reduction achieved for the following two recently proposed full-diversity Space-Frequency coded MIMO-OFDM systems using both the IDFT and the Hadamard transform: (i) W. Su. Z. Safar, M. Olfat, K. J. R. Liu (IEEE Trans. on Signal Processing, Nov. 2003), and (ii) W. Su, Z. Safar, K. J. R. Liu (IEEE Trans. on Information Theory, Jan. 2005).
Resumo:
In this two-part series of papers, a generalized non-orthogonal amplify and forward (GNAF) protocol which generalizes several known cooperative diversity protocols is proposed. Transmission in the GNAF protocol comprises of two phases - the broadcast phase and the cooperation phase. In the broadcast phase, the source broadcasts its information to the relays as well as the destination. In the cooperation phase, the source and the relays together transmit a space-time code in a distributed fashion. The GNAF protocol relaxes the constraints imposed by the protocol of Jing and Hassibi on the code structure. In Part-I of this paper, a code design criteria is obtained and it is shown that the GNAF protocol is delay efficient and coding gain efficient as well. Moreover GNAF protocol enables the use of sphere decoders at the destination with a non-exponential Maximum likelihood (ML) decoding complexity. In Part-II, several low decoding complexity code constructions are studied and a lower bound on the Diversity-Multiplexing Gain tradeoff of the GNAF protocol is obtained.
Resumo:
For p x n complex orthogonal designs in k variables, where p is the number of channels uses and n is the number of transmit antennas, the maximal rate L of the design is asymptotically half as n increases. But, for such maximal rate codes, the decoding delay p increases exponentially. To control the delay, if we put the restriction that p = n, i.e., consider only the square designs, then, the rate decreases exponentially as n increases. This necessitates the study of the maximal rate of the designs with restrictions of the form p = n+1, p = n+2, p = n+3 etc. In this paper, we study the maximal rate of complex orthogonal designs with the restrictions p = n+1 and p = n+2. We derive upper and lower bounds for the maximal rate for p = n+1 and p = n+2. Also for the case of p = n+1, we show that if the orthogonal design admit only the variables, their negatives and multiples of these by root-1 and zeros as the entries of the matrix (other complex linear combinations are not allowed), then the maximal rate always equals the lower bound.
Resumo:
Tanner Graph representation of linear block codes is widely used by iterative decoding algorithms for recovering data transmitted across a noisy communication channel from errors and erasures introduced by the channel. The stopping distance of a Tanner graph T for a binary linear block code C determines the number of erasures correctable using iterative decoding on the Tanner graph T when data is transmitted across a binary erasure channel using the code C. We show that the problem of finding the stopping distance of a Tanner graph is hard to approximate within any positive constant approximation ratio in polynomial time unless P = NP. It is also shown as a consequence that there can be no approximation algorithm for the problem achieving an approximation ratio of 2(log n)(1-epsilon) for any epsilon > 0 unless NP subset of DTIME(n(poly(log n))).