243 resultados para D. Afonso Henriques, 1109-1185
Resumo:
The conformation of the synthetic cyclic tetrapeptide cyclo(D-Phe-Pro-Sar-Gly) has been determined in solution using the nuclear magnetic resonance technique and in the crystal state by X-ray crystallography. Results showed that the peptide exhibited two different conformations in solution, conformer 1 having cis-trans-cis-trans peptide bonds and conformer 2 having trans-cis-trans-cis peptide bonds. No intramolecular hydrogen bonds were observed in the structures. The X-ray diffraction studies showed the crystals to be orthorhombic with space group P2(1)2(1)2(1) with unit-cell dimensions, a = 5.790, b = 10.344, c = 31.446 A, Z = 4, R = 0.104 for 2301 observed reflections. The crystal structure showed only one type of conformer having cis-trans-cis-trans peptide bonds similar to the conformer 1 in solution.
Resumo:
The crystal structures of alkyl 2-deoxy-alpha-D-arabino-hexopyranosides, with the alkyl chain lengths from C-8 to C-18, are established by the single crystal X-ray structural determination. The even-alkyl chain length derivatives crystallized orthorhombic, with space group P2(1)2(1)2(1), whereas the odd-alkyl chain length derivatives crystallized monoclinic, with space group P2(1). The sugar moieties retained a C-4(1) chair conformation and the conformation of the alkyl chains was all-trans. The molecules formed a bilayer structure, in which alkyl chains were interdigitated.The hydrogen bonds, originating from the sugar moieties, were observed in adjacent layers and also within the same layer, resulting in the formation of infinite chains. The alkyl chains arranged parallel to each other and formed planar structures. The thermal properties of the alkyl 2-deoxy glucosides were analyzed further. It was observed that none of the derivatives exhibited mesomorphism. This study establishes that the absence of the hydroxyl group at C-2 of the sugar moiety results in a non-mesogenic nature of the alkyl 2-deoxy-alpha-D-glycosides, as opposed to the profound mesogenic nature of the normal alkyl glycosides.
Resumo:
The present work deals with the anticancer effect of benzimidazole derivatives associated with the pyridine framework. By varying the functional group at N-terminal of the benzimidazole by different L-amino acids, several 2-(4-(2,2,2-trifluoroethoxy)-3-methylpyridin-2-ylthio)-1H-benzo[d]imid azole derivatives 9(a-j) were synthesized. Their chemical structures were confirmed by H-1 NMR, IR and mass spectroscopic techniques. The synthesized compounds were examined for their antiproliferative effects against human leukemia cell lines, K562 and CEM. The preliminary results showed most of the derivatives had moderate antitumor activity. Compound 9j containing cysteine residue exhibited good inhibition compared to other amino acid resides. In addition DNA fragmentation results suggest that 9j is more cytotoxic and able to induce apoptosis.
Resumo:
Polarization of ligand fluorescence was used to study the binding of 4-methylumbelliferyl beta-D-galactopyranoside (MeUmb-Galp) to Abrus precatorious agglutinin. The binding of the fluorescent sugar to the lectin led to considerable polarization of the MeUmb-Galp fluorescence, which was also quenched by about 30% on binding to the lectin. The binding of the fluorescent sugar was carbohydrate-specific, as evidenced by inhibition of both fluorescence polarization and quenching when lectin was preincubated with lactose. The association constant as determined by fluorescence polarization is 1.42 x 10(4) M-1 at 25 degrees C and is in excellent agreement with those determined by fluorescence quenching (Ka = 1.51 x 10(4) M-1) and equilibrium dialysis (Ka = 1.62 x 10(4) M-1) at 25 degrees C. The numbers of binding sites as determined by fluorescence polarization, quenching and equilibrium dialysis agree very well with one another, n being equal to 2.0 +/- 0.05. The consistency between the association constant value determined by fluorescence polarization, quenching and equilibrium dialysis shows the validity of this approach to study lectin-sugar interaction.
Resumo:
A kinetic study of the tumor-associated galactopyranosyl-(1→3)-2-acetamido-2-deoxy-α-d-galactopyranoside (T-antigen) with lectin peanut agglutinin is described. The disaccharide antigen was synthesized by chemical methods and was functionalized suitably for immobilization onto a carboxy-methylated sensor chip. The ligand immobilized surface was allowed interaction with the lectin peanut agglutinin, which acted as the analyte and the interaction was studied by the surface plasmon resonance method. The ligand—lectin interaction was characterized by the kinetic on-off rates and a bivalent analyte binding model was found to describe the observed kinetic constants. It was identified that the antigen-lectin interaction had a faster association rate constant (k a1) and a slower dissociation rate constant (k d1) in the initial binding step. The subsequent binding step showed much reduced kinetic rates. The antigen-lectin interaction was compared with the kinetic rates of the interaction of a galactopyranosyl-(1→4)-β-d-galactopyranoside derivative and a mannopyranoside derivative with the lectin.
Resumo:
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Suclakov and Zaks (and earlier by Fiamcik) that a'(G) <= Delta+2, where Delta = Delta(G) denotes the maximum degree of the graph. Alon et al. also raised the question whether the complete graphs of even order are the only regular graphs which require Delta+2 colors to be acyclically edge colored. In this article, using a simple counting argument we observe not only that this is not true, but in fact all d-regular graphs with 2n vertices and d>n, requires at least d+2 colors. We also show that a'(K-n,K-n) >= n+2, when n is odd using a more non-trivial argument. (Here K-n,K-n denotes the complete bipartite graph with n vertices on each side.) This lower bound for Kn,n can be shown to be tight for some families of complete bipartite graphs and for small values of n. We also infer that for every d, n such that d >= 5, n >= 2d+3 and dn even, there exist d-regular graphs which require at least d+2-colors to be acyclically edge colored. (C) 2009 Wiley Periodicals, Inc. J Graph Theory 63: 226-230, 2010.
Resumo:
Motivated by a suggestion in our earlier work [G. Baskaran, Phys. Rev. B 65, 212505 (2002)], we study electron correlation driven superconductivity in doped graphene where on-site correlations are believed to be of intermediate strength. Using an extensive variational Monte Carlo study of the repulsive Hubbard model and a correlated ground state wave function, we show that doped graphene supports a superconducting ground state with a d+id pairing symmetry. We estimate superconductivity reaching room temperatures at an optimal doping of about 15%-20%. Our work suggests that correlations can stabilize superconductivity even in systems with intermediate coupling.
Resumo:
We have measured hyperfine structure in the first-excited P state (D lines) of all the naturally occurring alkali atoms. We use high-resolution laser spectroscopy to resolve hyperfine transitions, and measure intervals by locking the frequency shift produced by an acousto-optic modulator to the difference between two transitions. In most cases, the hyperfine coupling constants derived from our measurements improve previous values significantly.
Resumo:
Titration calorimetry measurements of the binding of phenyl-alpha (alpha PhOGlu), 3-methoxy (3MeOGlu), fluorodeoxy and deoxy derivatives of alpha-D-glucopyranose (Glu) to concanavalin A (conA), pea lectin and lentil lectin were performed at approx. 10 and 25 degrees C in 0.01 M dimethylglutaric acid/NaOH buffer, pH 6.9, containing 0.15 M NaCl and Mn2+ and Ca2+ ions. Apparently the 3-deoxy, 4-deoxy and 6-deoxy as well as the 4-fluorodeoxy and 6-fluorodeoxy derivatives of Glu do not bind to the lectins because no heat release was observed on the addition of aliquots of solutions of these derivatives to the lectin solutions. The binding enthalpies, delta H0b, and entropies, delta S0b, determined from the measurements were compared with the same thermodynamic binding parameters for Glu, D-mannopyranoside and methyl-alpha- D-glucopyranoside (alpha MeOGlu). The binding reactions are enthalpically driven with little change in the heat capacity on binding, and exhibit enthalpy-entropy compensation. Differences between the thermodynamic binding parameters can be rationalized in terms of the interactions apparent in the known crystal structures of the methyl-alpha-D-mannopyranoside-conA [Derewenda, Yariv, Helliwell, Kalb (Gilboa), Dodson, Papiz, Wan and Campbell (1989) EMBO J. 8, 2189-2193] and pea lectin-trimanno-pyranoside [Rini, Hardman, Einspahr, Suddath and Carber (1993) J. Biol. Chem. 268, 10126-10132] complexes. Increases in the entropy change on binding are observed for alpha MeOGlu binding to pea and lentil lectin, for alpha PhOGlu binding to conA and pea lectin, and for 3MeOGlu binding to pea lectin relative to the entropy change for Glu binding, and imply that the phenoxy and methoxy substituents provide additional hydrophobic interactions in the complex. Increases in the binding enthalpy relative to that of Glu are observed for deoxy and fluoro derivatives in the C-1 and C-2 positions and imply that these substituents weaken the interaction with the surrounding water, thereby strengthening the interaction with the binding site.
Resumo:
The scope of application of Laplace transforms presently limited to the study of linear partial differential equations, is extended to the nonlinear domain by this study. This has been achieved by modifying the definition of D transforms, put forth recently for the study of classes of nonlinear lumped parameter systems. The appropriate properties of the new D transforms are presented to bring out their applicability in the analysis of nonlinear distributed parameter systems.
Resumo:
Benzothiazoles are multitarget agents with broad spectrum of biological activity. Among the antitumor agents discovered in recent years, the identification of various 2-(4-aminophenyl) benzothiazoles as potent and selective antitumor drugs against different cancer cell lines has stimulated remarkable interest. Some of the benzothiazoles are known to induce cell cycle arrest, activation of caspases and interaction with DNA molecule. Based on these interesting properties of benzothiazoles and to obtain new biologically active agents, a series of novel 4,5,6,7-tetrahydrobenzo[d]thiazole derivatives 5(a-i) were synthesized and evaluated for their efficacy as antileukemic agents in human leukemia cells (K562 and Reh). The chemical structures of the synthesized compounds were confirmed by H-1 NMR, LCMS and IR analysis. The cytotoxicity of these compounds were determined using trypan blue exclusion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Results showed that, these compounds mediate a significant cytotoxic response to cancer cell lines tested. We found that the compounds having electron withdrawing groups at different positions of the phenyl ring of the thiourea moiety displayed significant cytotoxic effect with IC50 value less than 60 mu M. To rationalize the role of electron withdrawing group in the induction of cytotoxicity, we have chosen molecule 5g (IC50 similar to 15 mu M) which is having chloro substitution at ortho and para positions. Flow cytometric analysis of annexin V-FITC/ propidium iodide (PI) double staining and DNA fragmentation suggest that 5g can induce apoptosis.
Resumo:
n many parts of the world, the goal of electricity supply industries is always the introduction of competition and a lowering of the average consumer price. Because of this it has become much more important to be able to determine which generators are supplying a particular load, how much use each generator is making of a transmission line and what is generator's contribution to the system losses. In this paper a case study on generator contributions towards loads and transmission flows are illustrated with an equivalent 11-bus system, a part of Indian Southern Grid, based on the concepts of circuit flow directions, for normal and network contingency conditions.
Resumo:
In this paper a mixed-split scheme is proposed in the context of 2-D DPCM based LSF quantization scheme employing split vector product VQ mechanism. Experimental evaluation shows that the new scheme is successfully being able to show better distortion performance than existing safety-net scheme for noisy channel even at considerably lower search complexity, by efficiently exploiting LSF trajectory behavior across the consecutive speech frames.