145 resultados para Cusp Magnetic Field


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present photoluminescence and reflectance spectra of GaAs/Al-x Ga-1-x As quantum wells in a magnetic field for the Faraday geometry. The photoluminescence peaks recorded are among the most intense and narrow reported to date. This has allowed us to study the behavior of closely spaced bound exciton lines under a magnetic field. Several new features including magnetic field induced splitting of the bound exciton emission peaks are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two topical subjects related with the effect of magnetic field on electrical conduction and the metal-insulator transition are discussed. The first topic is an electronic phase transition in graphite, which is interpreted as a manifestation of a nestingtype instability inherent to a one-dimensional narrow Landau sub-band. The second topic is spin-dependent tranport in III-V based diluted magnetic semiconductors; in particular, a large negative magnetoresistance observed in the vicinity of metal-nonmetal transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteady laminar incompressible boundary layer flow of an electrically conducting fluid in the stagnation region of two-dimensional and axisymmetric bodies with an applied magnetic field has been studied. The boundary layer equations which are parabolic partial differential equations with three independent variables have been reduced to a system of ordinary differential equations by using suitable transformations and then solved numerically using a shooting method. Here, we have obtained new solutions which are solutions of both the boundary layer and Navier-Stokes equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: An analysis is performed to study the unsteady compressible laminar boundary layer flow in the forward stagnation-point region of a sphere with a magnetic field applied normal, to the surface. We have considered the case where there is an initial steady state that is perturbed by the step change in the total enthalpy at the wall. The nonlinear coupled parabolic partial differential equations governing the flow and heat transfer have been solved numerically using a finite-difference scheme. The numerical results are presented, which show the temporal development of the boundary layer. The magnetic field in the presence of variable electrical conductivity causes an overshoot in the velocity profile. Also, when the total enthalpy at the wall is suddenly increased, there is a change in the direction of transfer of heat in a small interval of time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dikpati and Choudhuri (1993, 1995) developed a model for the poleward migration of the weak diffuse magnetic field on the Sun's surface. This field was identified with the poloidal component produced by the solar dynamo operating at the base of the convection zone, and its evolution was studied by considering the effects of meridional circulation and turbulent diffusion. The earlier model is extended in this paper by incorporating the flux from, the decay of tilted active regions near the solar surface as an additional source of the poloidal field. This extended model can now explain various low-latitude features in the time-latitude diagram of the weak diffuse fields. These low-latitude features could not be accounted for in the earlier model, which was very successful in modeling the behavior at high latitudes. The time-latitude diagrams show that regions of a particular polarity often have 'tongues' of opposite polarity. Such tongues can be produced in the theoretical model by incorporating fluctuations in the source term arising out of the decaying active regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report an anomalous magnetostriction behavior of the charge ordered compound Nd0.5Sr0.5MnO3. We have found that the applied magnetic field not only gives rise to a large negative magnetoresistance but also produces a huge positive magnetovolume effect. This unusual effect is explained considering that the applied magnetic field induces a structural transition at which the volume drastically increases. This effect is also seen in the anisotropic magnetostriction which shows clear anomalies at the field induced transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combination of numerical and analytical techniques is used to analyse the effect of magnetic field and encapsulated layer on the onset of oscillatory Marangoni instability in a two layer system. Oscillatory Marangoni instability is possible for a deformed free surface only when the system is heated from above. It is observed that the existence of a second layer has a positive effect on Marangoni overstability with magnetic field whereas it has an opposite effect without magnetic field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteady laminar boundary layer flow of an electrically conducting fluid past a semi-infinite flat plate with an aligned magnetic field has been studied when at time t > 0 the plate is impulsively moved with a constant velocity which is in the same or opposite direction to that of free stream velocity. The effect of the induced magnetic field has been included in the analysis. The non-linear partial differential equations have been solved numerically using an implicit finite-difference method. The effect of the impulsive motion of the surface is found to be more pronounced on the skin friction but its effect on the x-component of the induced magnetic field and heat transfer is small. Velocity defect occurs near the surface when the plate is impulsively moved in the same direction as that of the free stream velocity. The surface shear stress, x-component of the induced magnetic field on the surface and the surface heat transfer decrease with an increasing magnetic field, but they increase with the reciprocal of the magnetic Prandtl number. However, the effect of the reciprocal of the magnetic Prandtl number is more pronounced on the x-component of the induced magnetic field. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report here results from a dynamo model developed on the lines of the Babcock-Leighton idea that the poloidal field is generated at the surface of the Sun from the decay of active regions. In this model magnetic buoyancy is handled with a realistic recipe - wherein toroidal flux is made to erupt from the overshoot layer wherever it exceeds a specified critical field B-C (10(5) G). The erupted toroidal field is then acted upon by the alpha-effect near the surface to give rise to the poloidal field. In this paper we study the effect of buoyancy on the dynamo generated magnetic fields. Specifically, we show that the mechanism of buoyant eruption and the subsequent depletion of the toroidal field inside the overshoot layer, is capable of constraining the magnitude and distribution of the magnetic field there. We also believe that a critical study of this mechanism may give us new information regarding the solar interior and end with an example, where we propose a method for estimating an upper limit of the difusivity within the overshoot layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report an extended x-ray absorption fine-structure investigation on the Mn K absorption edge in La1-xCaxMnO3 as a function of temperature and magnetic field. The results provide microscopic evidence that the modifications in the local structure around Mn atomic sites, as a function of temperature and applied magnetic field, are directly related to the magneto-transport properties of these materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The non-similar boundary layer flow of a viscous incompressible electrically conducting fluid over a moving surface in a rotating fluid, in the presence of a magnetic field, Hall currents and the free stream velocity has been studied. The parabolic partial differential equations governing the flow are solved numerically using an implicit finite-difference scheme. The Coriolis force induces overshoot in the velocity profile of the primary flow and the magnetic field reduces/removes the velocity overshoot. The local skin friction coefficient for the primary flow increases with the magnetic field, but the skin friction coefficient for the secondary flow reduces it. Also the local skin friction coefficients for the primary and secondary flows are reduced due to the Hall currents. The effects of the magnetic field, Hall currents and the wall velocity, on the skin friction coefficients for the primary and secondary flows increase with the Coriolis force. The wall velocity strongly affects the flow field. When the wall velocity is equal to the free stream velocity, the skin friction coefficients for the primary and secondary flows vanish, but this does not imply separation. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent results and data suggest that high magnetic fields in neutron stars (NS) strongly affect the characteristics (radius, mass) of the star. Such stars are even separated into a class known as magnetars, for which the surface magnetic field is greater than 10(14) G. In this work we discuss the effect of such a high magnetic field on the phase transition of a NS to a quark star (QS). We study the effect of magnetic field on the transition from NS to QS including the magnetic-field effect in the equation of state (EoS). The inclusion of the magnetic field increases the range of baryon number densities for which the flow velocities of the matter in the respective phase are finite. The magnetic field helps in initiation of the conversion process. The velocity of the conversion front, however, decreases due to the presence of the magnetic field, as the presence of the magnetic field reduces the effective pressure (P). The magnetic field of the star is decreased by the conversion process, and the resultant QS has lower magnetic field than the initial NS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteady free convection flow over an infinite vertical porous plate, which moves with time-dependent velocity in an ambient fluid, has been studied. The effects of the magnetic field and Hall current are included in the analysis. The buoyancy forces arise due to both the thermal and mass diffusion. The partial differential equations governing the flow have been solved numerically using both the implicit finite difference scheme and the difference-differential method. For the steady case, analytical solutions have also been obtained. The effect of time variation on the skin friction, heat transfer and mass transfer is very significant. Suction increases the skin friction coefficient in the primary flow, and also the Nusselt and Sherwood numbers, but the skin friction coefficient in the secondary flow is reduced. The effect of injection is opposite to that of suction. The buoyancy force, injection and the Hall parameter induce an overshoot in the velocity profiles in the primary flow which changes the velocity gradient from a negative to a positive value, but the magnetic field and suction reduce this velocity overshoot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analysis is developed to study the unsteady mixed convection flow over a vertical cone rotating in an ambient fluid with a time-dependent angular velocity in the presence of a magnetic field. The coupled nonlinear partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The local skin friction coefficients in the tangential and azimuthal directions and the local Nusselt number increase with the time when the angular velocity of the-cone increases, but the reverse trend is observed for decreasing angular velocity. However, these are not mirror reflection of each other. The magnetic field reduces the skin friction coefficient in the tangential direction and also the Nusselt number, but it increases the skin friction coefficient in the azimuthal direction. The skin friction coefficients and the Nusselt number increase with the buoyancy force.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A vacuum interrupter utilises magnetic field for effective arc extinction. Based on the type of field, the vacuum interrupters are classified as radial or axial magnetic type of vacuum interrupters. This paper focuses on the axial magnetic field type of vacuum interrupters. The magnitude and distribution of the axial magnetic field is a function of the design of the contact system. It also depends on the orientations of the movable and fixed contact systems with respect to each other. This paper investigates the dependence of arcing and erosion performance of the contact on the magnitude and distribution of this axially oriented magnetic field. The experimental observations are well supported by electromagnetic simulations.