105 resultados para Cross-border transactions
Resumo:
The evolution of crystallographic texture in polycrystalline copper and nickel has been studied. The deformation texture evolution in these two materials over seven orders of magnitude of strain rate from 3 x 10(-4) to similar to 2.0 x 10(+3) s(-1) show little dependence on the stacking fault energy (SFE) and the amount of deformation. Higher strain rate deformation in nickel leads to weakerh < 101 > texture because of extensive microband formation and grain fragmentation. This behavior, in turn, causes less plastic spin and hence retards texture evolution. Copper maintains the stable end < 101 > component over large strain rates (from 3 x 10(-4) to 10(+2) s(-1)) because of its higher strain-hardening rate that resists formation of deformation heterogeneities. At higher strain rates of the order of 2 x 10(+3) s(-1), the adiabatic temperature rise assists in continuous dynamic recrystallization that leads to an increase in the volume fraction of the < 101 > component. Thus, strain-hardening behavior plays a significant role in the texture evolution of face-centered cubic materials. In addition, factors governing the onset of restoration mechanisms like purity and melting point govern texture evolution at high strain rates. SFE may play a secondary role by governing the propensity of cross slip that in turn helps in the activation of restoration processes.
Resumo:
The effect of dipolar cross correlation in 1H---1H nuclear Overhauser effect experiments is investigated by detailed calculation in an ABX spin system. It is found that in weakly coupled spin systems, the cross-correlation effects are limited to single-quantum transition probabilities and decrease in magnitude as ωτc increases. Strong coupling, however, mixes the states and the cross correlations affect the zero-quantum and double-quantum transition probabilities as well. The effect of cross correlation in steady-state and transient NOE experiments is studied as a function of strong coupling and ωτc. The results for steady-state NOE experiments are calculated analytically and those for transient NOE experiments are calculated numerically. The NOE values for the A and B spins have been calculated by assuming nonselective perturbation of all the transitions of the X spin. A significant effect of cross correlation is found in transient NOE experiments of weakly as well as strongly coupled spins when the multiplets are resolved. Cross correlation manifests itself largely as a multiplet effect in the transient NOE of weakly coupled spins for nonselective perturbation of all X transitions. This effect disappears for a measuring pulse of 90° or when the multiplets are not resolved. For steady-state experiments, the effect of cross correlation is analytically zero for weakly coupled spins and small for strongly coupled spins.
Resumo:
Heteronuclear multiple-quantum coherence relaxation rate are calculated for the individual transitions of the S spin in an AIS nuclear spin system assuming that the heteronucleus (S spin) has relaxation contributions from both intramolecular dipole-dipole and chemical shift anisotropy relaxation. The individual multiplet components of the heteronuclear zero- and double-quantum coherences are shown to have different transverse relaxation rates. The cross-correlation between the two relaxation mechanisms is shown to be the dominant cause of the calculated differential line broadening. Experimental data are presented using as an example a uniformly 15N labelled sample of human epidermal growth factor.
Resumo:
Sparking potentials in a coaxial cylinder geometry in oxygen and dry air were measured in crossed electric and magnetic fields. From the data effective collision frequencies were calculated using the equivalent pressure concept. It is shown that the equivalent pressure concept holds good for deriving the effective collision frequencies in non-uniform electric fields.
Resumo:
In a number of applications of computerized tomography, the ultimate goal is to detect and characterize objects within a cross section. Detection of edges of different contrast regions yields the required information. The problem of detecting edges from projection data is addressed. It is shown that the class of linear edge detection operators used on images can be used for detection of edges directly from projection data. This not only reduces the computational burden but also avoids the difficulties of postprocessing a reconstructed image. This is accomplished by a convolution backprojection operation. For example, with the Marr-Hildreth edge detection operator, the filtering function that is to be used on the projection data is the Radon transform of the Laplacian of the 2-D Gaussian function which is combined with the reconstruction filter. Simulation results showing the efficacy of the proposed method and a comparison with edges detected from the reconstructed image are presented
Resumo:
Cross-reactivity of allergens from the pollen of the Compositae weeds, Parthenium hysterophorus (American feverfew) and Ambrosia (ragweed), in 2 groups of patients with different geographic distributions was studied. Parthenium-sensitive Indian patients, who were never exposed to ragweed, elicited positive skin reactions with ragweed pollen extracts. A significant correlation in the RAST scores of Parthenium and ragweed-specific IgE was observed with the sera of Parthenium and ragweed-sensitive Indian and US patients, respectively. RAST inhibition experiments demonstrated that the binding of IgE antibodies in the sera of ragweed-sensitive patients to short (Wl) and giant (W3) ragweed allergen discs could be inhibited by up to 94% by Parthenium pollen extracts. Similar inhibition (up to 82%) was obtained when the sera of Parthenium rhinitis patients were incubated with ragweed allergen extracts. A dose-dependent proliferation of lymphocytes from a Parthenium-sensitive rhinitis patient with elevated levels of both Parthenium and ragweed-specific IgE was observed when incubated with Parthenium and ragweed pollen extracts. A 1.6-fold higher proliferation, however, was observed with Parthenium pollen extract at a concentration of 100 µg/ml. These results suggest that shared epitopes present on Parthenium and ragweed pollen allergens are recognized by both Indian and US patients sensitized by exposure to Parthenium and ragweed pollen, respectively. The high degree of cross-reactivity between Parthenium and ragweed pollen allergens suggests that individuals sensitized to Parthenium may develop type-I hypersensitivity reactions to ragweed and vice versa when they travel to regions infested with the weed to which they had not been previously exposed.
Resumo:
Physalis mottle tymovirus (previously named belladonna mottle virus, Iowa strain) RNA was cross-linked to its coat protein by exposure of the intact virus to ultraviolet light. The site of cross-linking of the coat protein with the RNA was identified as Lys-10 by sequencing the oligonucleotide-linked tryptic peptide obtained upon HPLC separation subsequent to enzymetic digestion of the cross-linked and dissociated virus. Three monoclonal antibodies PA3B2, PB5G9, and PF12C9, obtained using denatured coat protein as antigen, cross-reacted effectively with the intact virus indicating that the epitopes recognized by these monoclonals are on the surface of the virus. Using the peptides generated by digestion with CNBr, clostripain, V-8 protease, or trypsin and a recombinant protein lacking the N-terminal 21 residues expressed from a cDNA clone, it was shown that PA3B2 recognizes the sequence 22-36 on the coat protein while PB5G9 and PF12C9 recognize region 75-110. These results suggest that Lys-10 is one of the specific sites through which the RNA interacts in the intact virus. The polypeptide segment (region 22-36) following this buried portion as well as the epitope within the region 75-110 are exposed in the intact virus. These observations are consistent with the canonical β-barrel structure observed in certain other plant viruses.
Resumo:
The effect of Raman scattering on co-propagation of two short optical pulses is considered. The intra pulse Raman scattering causes the self-frequency shift of each pulse. The effect of the inter pulse Raman scattering is to enhance the frequency shift while the stimulated Raman scattering (SRS) term suppresses (enhances) the frequency shift if the center frequency difference between the optical pulses falls to the right (left) of the Raman gain peak. An expression for the frequency shift as a function of the propagation distance is obtained.
Resumo:
A comprehensive scheme for analysing uniaxial deformation data, taking into account the finite stiffness of the testing machine is presented. Equations relevant to tension and stress relaxation tests carried out under cross head speed control, and to creep testing under constant load, are described. For the first two cases, the implications of not using gauge length extensometry but relying upon cross head displacement for inferring specimen extension, and the role of uncertainty in machine stiffness are also examined. The final section touches upon the extension of the present scheme to account for specimen anelasticity.
Resumo:
Cross-strand disulfides bridge two cysteines in a registered pair of antiparallel beta-strands. A nonredundant data set comprising 5025 polypeptides containing 2311 disulfides was used to study cross-strand disulfides. Seventy-six cross-strand disulfides were found of which 75 and 1 occurred at non-hydrogen-bonded (NHB) and hydrogen-bonded (HB) registered pairs, respectively. Conformational analysis and modeling studies demonstrated that disulfide formation at HB pairs necessarily requires an extremely rare and positive chi(1) value for at least one of the cysteine residues. Disulfides at HB positions also have more unfavorable steric repulsion with the main chain. Thirteen pairs of disulfides were introduced in NHB and HB pairs in four model proteins: leucine binding protein (LBP), leucine, isoleucine, valine binding protein (LIVBP), maltose binding protein (MBP), and Top7. All mutants LIVBP T247C V331C showed disulfide formation either on purification, or on treatment with oxidants. Protein stability in both oxidized and reduced states of all mutants was measured. Relative to wild type, LBP and MBP mutants were destabilized with respect to chemical denaturation, although the sole exposed NHB LBP mutant showed an increase of 3.1 degrees C in T-m. All Top7 mutants were characterized for stability through guanidinium thiocyanate chemical denaturation. Both exposed and two of the three buried NHB mutants were appreciably stabilized. All four HB Top7 mutants were destabilized (Delta Delta G(0) = -3.3 to -6.7 kcal/mol). The data demonstrate that introduction of cross-strand disulfides at exposed NHB pairs is a robust method of improving protein stability. All four exposed Top7 disulfide mutants showed mild redox activity. Proteins 2011; 79: 244-260. (C) 2010 Wiley-Liss, Inc.
Resumo:
The pulsatile flow of an incompressible viscous fluid in an elliptical pipe of slowly varying cross-section is considered. Asymptotic series solutions for the velocity distribution and pressure gradient are obtained in terms of Mathieu functions for a low Reynold number flow in which the volume flux is prescribed. An expression for shear stress on the boundary is derived. The physically significant quantities governing the flow are computed numerically and analysed for different types of constrictions. The effect of eccentricity and Womerslay parameter on the flow is discussed.
Resumo:
The present work describes the evolution of a strong, single-component rotated-Brass ((1 1 0) < 5 5 6 >) texture in an Al-Zn-Mg-Cu-Zr alloy by an uneven hot cross-rolling with frequent interpass annealing. This texture development is unique because hot rolling of aluminum alloys results in orientation distribution along the ``beta-fibre''. It has been demonstrated that the deformation by cross-rolling of a partially recrystallized grain structure having rotated-Cube and Goss orientations, and the recrystallization resistance of near-Brass-oriented elongated grains play a critical role in development of this texture. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the field oriented control of a salient pole wound field synchronous machine in stator flux coordinates. The procedure for derivation of flux linkage equations along any general rotating axes including stator flux axes is given. The stator flux equations are used to identify the cross-coupling occurring between the axes due to saliency in the machine. The coupling terms are canceled as feedforward terms in the generation of references for current controllers to achieve good decoupling during transients. The design of current controller for stator-flux-oriented control is presented. This paper proposes the method of extending rotor flux closed loop observer for sensorless control of wound field synchronous machine. This paper also proposes a new sensorless control by using stator flux closed loop observer and estimation of torque angle using stator current components in stator flux coordinates. Detailed experimental results from a sensorless 15.8 hp salient pole wound field synchronous machine drive are presented to demonstrate the performance of the proposed control strategy from a low speed of 0.8 Hz to 50 Hz.