65 resultados para Cosmic physics.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article it is pointed out how the different layers of substructure of matter were revealed to us by experiments which were essentially very similar to the famous α-particle scattering experiment performed by Rutherford. This experiment, which revealed the nuclear structure of an atom, paved the way towards our current understanding of the fundamental constituents of matter and shaped the course of physics for the 20th century.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Future space-based gravity wave (GW) experiments such as the Big Bang Observatory (BBO), with their excellent projected, one sigma angular resolution, will measure the luminosity distance to a large number of GW sources to high precision, and the redshift of the single galaxies in the narrow solid angles towards the sources will provide the redshifts of the gravity wave sources. One sigma BBO beams contain the actual source in only 68% of the cases; the beams that do not contain the source may contain a spurious single galaxy, leading to misidentification. To increase the probability of the source falling within the beam, larger beams have to be considered, decreasing the chances of finding single galaxies in the beams. Saini et al. T.D. Saini, S.K. Sethi, and V. Sahni, Phys. Rev. D 81, 103009 (2010)] argued, largely analytically, that identifying even a small number of GW source galaxies furnishes a rough distance-redshift relation, which could be used to further resolve sources that have multiple objects in the angular beam. In this work we further develop this idea by introducing a self-calibrating iterative scheme which works in conjunction with Monte Carlo simulations to determine the luminosity distance to GW sources with progressively greater accuracy. This iterative scheme allows one to determine the equation of state of dark energy to within an accuracy of a few percent for a gravity wave experiment possessing a beam width an order of magnitude larger than BBO (and therefore having a far poorer angular resolution). This is achieved with no prior information about the nature of dark energy from other data sets such as type Ia supernovae, baryon acoustic oscillations, cosmic microwave background, etc. DOI:10.1103/PhysRevD.87.083001

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this brief, we present a physics-based solution for the temperature-dependent electrical resistance of a suspended metallic single-layer graphene (SLG) sheet under Joule self-heating. The effect of in-plane and flexural phonons on the electron scattering rates for a doped SLG layer has been considered, which particularly demonstrates the variation of the electrical resistance with increasing temperature at different current levels using the solution of the self-heating equation. The present solution agrees well with the available experimental data done with back-gate electrostatic method over a wide range of temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SARAS is a correlation spectrometer purpose designed for precision measurements of the cosmic radio background and faint features in the sky spectrum at long wavelengths that arise from redshifted 21-cm from gas in the reionization epoch. SARAS operates in the octave band 87.5-175 MHz. We present herein the system design arguing for a complex correlation spectrometer concept. The SARAS design concept provides a differential measurement between the antenna temperature and that of an internal reference termination, with measurements in switched system states allowing for cancellation of additive contaminants from a large part of the signal flow path including the digital spectrometer. A switched noise injection scheme provides absolute spectral calibration. Additionally, we argue for an electrically small frequency-independent antenna over an absorber ground. Various critical design features that aid in avoidance of systematics and in providing calibration products for the parametrization of other unavoidable systematics are described and the rationale discussed. The signal flow and processing is analyzed and the response to noise temperatures of the antenna, reference termination and amplifiers is computed. Multi-path propagation arising from internal reflections are considered in the analysis, which includes a harmonic series of internal reflections. We opine that the SARAS design concept is advantageous for precision measurement of the absolute cosmic radio background spectrum; therefore, the design features and analysis methods presented here are expected to serve as a basis for implementations tailored to measurements of a multiplicity of features in the background sky at long wavelengths, which may arise from events in the dark ages and subsequent reionization era.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Is the Chandrasekhar mass limit for white dwarfs (WDs) set in stone? Not anymore, recent observations of over-luminous, peculiar type Ia supernovae can be explained if significantly super-Chandrasekhar WDs exist as their progenitors, thus barring them to be used as cosmic distance indicators. However, there is no estimate of a mass limit for these super-Chandrasekhar WD candidates yet. Can they be arbitrarily large? In fact, the answer is no! We arrive at this revelation by exploiting the flux freezing theorem in observed, accreting, magnetized WDs, which brings in Landau quantization of the underlying electron degenerate gas. This essay presents the calculations which pave the way for the ultimate (significantly super-Chandrasekhar) mass limit of WDs, heralding a paradigm shift 80 years after Chandrasekhar's discovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the armoury of photovoltaic materials, thin film heterojunction photovoltaics continue to be a promising candidate for solar energy conversion delivering a vast scope in terms of device design and fabrication. Their production does not require expensive semiconductor substrates and high temperature device processing, which allows reduced cost per unit area while maintaining reasonable efficiency. In this regard, superstrate CdTe/CdS solar cells are extensively investigated because of their suitable bandgap alignments, cost effective methods of production at large scales and stability against proton/electron irradiation. The conversion efficiencies in the range of 6-20% are achieved by structuring the device by varying the absorber/window layer thickness, junction activation/annealing steps, with more suitable front/back contacts, preparation techniques, doping with foreign ions, etc. This review focuses on fundamental and critical aspects like: (a) choice of CdS window layer and CdTe absorber layer; (b) drawbacks associated with the device including environmental problems, optical absorption losses and back contact barriers; (c) structural dynamics at CdS-CdTe interface; (d) influence of junction activation process by CdCl2 or HCF2Cl treatment; (e) interface and grain boundary passivation effects; (f) device degradation due to impurity diffusion and stress; (g) fabrication with suitable front and back contacts; (h) chemical processes occurring at various interfaces; (i) strategies and modifications developed to improve their efficiency. The complexity involved in understanding the multiple aspects of tuning the solar cell efficiency is reviewed in detail by considering the individual contribution from each component of the device. It is expected that this review article will enrich the materials aspects of CdTe/CdS devices for solar energy conversion and stimulate further innovative research interest on this intriguing topic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We clarify important physics issues related to the recently established new mass limit for magnetized white dwarfs which is significantly super-Chandrasekhar. The issues include, justification of high magnetic field and the corresponding formation of stable white dwarfs, contribution of the magnetic field to the total density and pressure, flux freezing, variation of magnetic field and related currents therein. We also attempt to address the observational connection of such highly magnetized white dwarfs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Filamentary structures are ubiquitous in astrophysics and are observed at various scales. On a cosmological scale, matter is usually distributed along filaments, and filaments are also typical features of the interstellar medium. Within a cosmic filament, matter can contract and form galaxies, whereas an interstellar gas filament can clump into a series of bead-like structures that can then turn into stars. To investigate the growth of such instabilities, we derive a local dispersion relation for an idealized self-gravitating filament and study some of its properties. Our idealized picture consists of an infinite self-gravitating and rotating cylinder with pressure and density related by a polytropic equation of state. We assume no specific density distribution, treat matter as a fluid, and use hydrodynamics to derive the linearized equations that govern the local perturbations. We obtain a dispersion relation for axisymmetric perturbations and study its properties in the (kR, kz) phase space, where kR and kz are the radial and longitudinal wavenumbers, respectively. While the boundary between the stable and unstable regimes is symmetrical in kR and kz and analogous to the Jeans criterion, the most unstable mode displays an asymmetry that could constrain the shape of the structures that form within the filament. Here the results are applied to a fiducial interstellar filament, but could be extended for other astrophysical systems, such as cosmological filaments and tidal tails.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene has emerged as one of the strongest candidates for post-silicon technologies. One of the most important applications of graphene in the foreseeable future is sensing of particles of gas molecules, biomolecules or different chemicals or sensing of radiation of particles like alpha, gamma or cosmic particles. Several unique properties of graphene such as its extremely small thickness, very low mass, large surface to volume ratio, very high absorption coefficient, high mobility of charge carriers, high mechanical strength and high Young's modulus make it exceptionally suitable for making sensors. In this article we review the state-of-the-art in the application of graphene as a material and radiation detector, focusing on the current experimental status, challenges and the excitement ahead.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most-studied signals for physics beyond the standard model in the production of gauge bosons in electron-positron collisions is due to the anomalous triple gauge boson couplings in the Z(gamma) final state. In this work, we study the implications of this at the ILC with polarized beams for signals that go beyond traditional anomalous triple neutral gauge boson couplings. Here we report a dimension-8 CP-conserving Z(gamma)Z vertex that has not found mention in the literature. We carry out a systematic study of the anomalous couplings in general terms and arrive at a classification. We then obtain linear-order distributions with and without CP violation. Furthermore, we place the study in the context of general BSM interactions represented by e(+)e(-)Z(gamma) contact interactions. We set up a correspondence between the triple gauge boson couplings and the four-point contact interactions. We also present sensitivities on these anomalous couplings, which will be achievable at the ILC with realistic polarization and luminosity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface brightness distribution in the majority of stellar galactic discs falls off exponentially. Often what lies beyond such a stellar disc is the neutral hydrogen gas whose distribution also follows a nearly exponential profile at least for a number of nearby disc galaxies. Both the stars and gas are commonly known to host lopsided asymmetry especially in the outer parts of a galaxy. The role of such asymmetry in the dynamical evolution of a galaxy has not been explored so far. Following Lindblad's original idea of kinematic density waves, we show that the outer part of an exponential disc is ideally suitable for hosting lopsided asymmetry. Further, we compute the transport of angular momentum in the combined stars and gas disc embedded in a dark matter halo. We show that in a pure star and gas disc, there is a transition point where the free precession frequency of a lopsided mode, Omega - kappa, changes from retrograde to prograde and this in turn reverses the direction of angular momentum flow in the disc leading to an unphysical behaviour. We show that this problem is overcome in the presence of a dark matter halo, which sets the angular momentum flow outwards as required for disc evolution, provided the lopsidedness is leading in nature. This, plus the well-known angular momentum transport in the inner parts due to spiral arms, can facilitate an inflow of gas from outside perhaps through the cosmic filaments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin film transistors (TFTs) on elastomers promise flexible electronics with stretching and bending. Recently, there have been several experimental studies reporting the behavior of TFTs under bending and buckling. In the presence of stress, the insulator capacitance is influenced due to two reasons. The first is the variation in insulator thickness depending on the Poisson ratio and strain. The second is the geometric influence of the curvature of the insulator-semiconductor interface during bending or buckling. This paper models the role of curvature on TFT performance and brings to light an elegant result wherein the TFT characteristics is dependent on the area under the capacitance-distance curve. The paper compares models with simulations and explains several experimental findings reported in literature. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador: