68 resultados para Convergence conditionnelle


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers the applicability of the least mean fourth (LM F) power gradient adaptation criteria with 'advantage' for signals associated with gaussian noise, the associated noise power estimate not being known. The proposed method, as an adaptive spectral estimator, is found to provide superior performance than the least mean square (LMS) adaptation for the same (or even lower) speed of convergence for signals having sufficiently high signal-to-gaussian noise ratio. The results include comparison of the performance of the LMS-tapped delay line, LMF-tapped delay line, LMS-lattice and LMF-lattice algorithms, with the Burg's block data method as reference. The signals, like sinusoids with noise and stochastic signals like EEG, are considered in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of estimating the optimal parameter trajectory over a finite time interval in a parameterized stochastic differential equation (SDE), and propose a simulation-based algorithm for this purpose. Towards this end, we consider a discretization of the SDE over finite time instants and reformulate the problem as one of finding an optimal parameter at each of these instants. A stochastic approximation algorithm based on the smoothed functional technique is adapted to this setting for finding the optimal parameter trajectory. A proof of convergence of the algorithm is presented and results of numerical experiments over two different settings are shown. The algorithm is seen to exhibit good performance. We also present extensions of our framework to the case of finding optimal parameterized feedback policies for controlled SDE and present numerical results in this scenario as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monsoon depressions intensify over the Bay of Bengal, move in a west-north-west (WNW) direction and dissipate over the Indian continent. No convincing physical explanation for their observed movement has so far been arrived at, but here, I suggest why the maximum precipitation occurs in the western sector of the depression and propose a feedback mechanism for the WNW movement of the depressions. We assume that a heat source is created over the Bay of Bengal due to organization of cumulus convection by the initial instability. In a linear sense, heating at this latitude (20° N), produces an atmospheric response mainly in the form of a stationary Rossby–gravity wave to the west of the heat source. The low-level vorticity (hence the frictional convergence) and the vertical velocity associated with the steady-state response is such that the maximum moisture convergence (and precipitation) is expected to occur in the WNW sector at a later time. Thus, the heat source moves to the WNW sector at a later time and the feedback continues resulting in the WNW movement of the depressions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of learning correct decision rules to minimize the probability of misclassification is a long-standing problem of supervised learning in pattern recognition. The problem of learning such optimal discriminant functions is considered for the class of problems where the statistical properties of the pattern classes are completely unknown. The problem is posed as a game with common payoff played by a team of mutually cooperating learning automata. This essentially results in a probabilistic search through the space of classifiers. The approach is inherently capable of learning discriminant functions that are nonlinear in their parameters also. A learning algorithm is presented for the team and convergence is established. It is proved that the team can obtain the optimal classifier to an arbitrary approximation. Simulation results with a few examples are presented where the team learns the optimal classifier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerically discretized dynamic optimization problems having active inequality and equality path constraints that along with the dynamics induce locally high index differential algebraic equations often cause the optimizer to fail in convergence or to produce degraded control solutions. In many applications, regularization of the numerically discretized problem in direct transcription schemes by perturbing the high index path constraints helps the optimizer to converge to usefulm control solutions. For complex engineering problems with many constraints it is often difficult to find effective nondegenerat perturbations that produce useful solutions in some neighborhood of the correct solution. In this paper we describe a numerical discretization that regularizes the numerically consistent discretized dynamics and does not perturb the path constraints. For all values of the regularization parameter the discretization remains numerically consistent with the dynamics and the path constraints specified in the, original problem. The regularization is quanti. able in terms of time step size in the mesh and the regularization parameter. For full regularized systems the scheme converges linearly in time step size.The method is illustrated with examples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fatigue and fracture performance of a cracked plate can be substantially improved by providing patches as reinforcements. The effectiveness of the patches is related to the reduction they cause in the stress intensity factor (SIF) of the crack. So, for reliable design, one needs an accurate evaluation of the SIF in terms of the crack, patch and adhesive parameters. In this investigation, a centrally cracked large plate with a pair of symmetric bonded narrow patches, oriented normally to the crack line, is analysed by a continuum approach. The narrow patches are treated as transversely flexible line members. The formulation leads to an integral equation which is solved numerically using point collocation. The convergence is rapid. It is found that substantial reductions in SIF are possible with practicable patch dimensions and locations. The patch is more effective when placed on the crack than ahead of the crack. The present analysis indicates that a little distance inwards of the crack tip, not the crack tip itself, is the ideal location, for the patch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used phase field simulations to study the effect of misfit and interfacial curvature on diffusion-controlled growth of an isolated precipitate in a supersaturated matrix. Treating our simulations as computer experiments, we compare our simulation results with those based on the Zener–Frank and Laraia–Johnson–Voorhees theories for the growth of non-misfitting and misfitting precipitates, respectively. The agreement between simulations and the Zener–Frank theory is very good in one-dimensional systems. In two-dimensional systems with interfacial curvature (with and without misfit), we find good agreement between theory and simulations, but only at large supersaturations, where we find that the Gibbs–Thomson effect is less completely realized. At small supersaturations, the convergence of instantaneous growth coefficient in simulations towards its theoretical value could not be tracked to completion, because the diffusional field reached the system boundary. Also at small supersaturations, the elevation in precipitate composition matches well with the theoretically predicted Gibbs–Thomson effect in both misfitting and non-misfitting systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relaxation labeling processes are a class of mechanisms that solve the problem of assigning labels to objects in a manner that is consistent with respect to some domain-specific constraints. We reformulate this using the model of a team of learning automata interacting with an environment or a high-level critic that gives noisy responses as to the consistency of a tentative labeling selected by the automata. This results in an iterative linear algorithm that is itself probabilistic. Using an explicit definition of consistency we give a complete analysis of this probabilistic relaxation process using weak convergence results for stochastic algorithms. Our model can accommodate a range of uncertainties in the compatibility functions. We prove a local convergence result and show that the point of convergence depends both on the initial labeling and the constraints. The algorithm is implementable in a highly parallel fashion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiaction learning automata which update their action probabilities on the basis of the responses they get from an environment are considered in this paper. The automata update the probabilities according to whether the environment responds with a reward or a penalty. Learning automata are said to possess ergodicity of the mean if the mean action probability is the state probability (or unconditional probability) of an ergodic Markov chain. In an earlier paper [11] we considered the problem of a two-action learning automaton being ergodic in the mean (EM). The family of such automata was characterized completely by proving the necessary and sufficient conditions for automata to be EM. In this paper, we generalize the results of [11] and obtain necessary and sufficient conditions for the multiaction learning automaton to be EM. These conditions involve two families of probability updating functions. It is shown that for the automaton to be EM the two families must be linearly dependent. The vector defining the linear dependence is the only vector parameter which controls the rate of convergence of the automaton. Further, the technique for reducing the variance of the limiting distribution is discussed. Just as in the two-action case, it is shown that the set of absolutely expedient schemes and the set of schemes which possess ergodicity of the mean are mutually disjoint.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The “partition method” or “sub-domain method” consists of expressing the solution of a governing differential equation, partial or ordinary, in terms of functions which satisfy the boundary conditions and setting to zero the error in the differential equation integrated over each of the sub-domains into which the given domain is partitioned. In this paper, the use of this method in eigenvalue problems with particular reference to vibration of plates is investigated. The deflection of the plate is expressed in terms of polynomials satisfying the boundary conditions completely. Setting the integrated error in each of the subdomains to zero results in a set of simultaneous, linear, homogeneous, algebraic equations in the undetermined coefficients of the deflection series. The algebraic eigenvalue problem is then solved for eigenvalues and eigenvectors. Convergence is examined in a few typical cases and is found to be satisfactory. The results obtained are compared with existing results based on other methods and are found to be in very good agreement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial degradation of geraniol, citronellol, linalool and their corresponding acetates, structurally modified linalool and linalyl acetate, α-terpineol and β-myrcene are presented. Oxygenative and prototropic rearrangements are normally observed during the microbial metabolism of monoterpenes. Three types of oxygenation reactions are observed, namely, (a) allylic oxygenation (b) oxygenation on a double bond and (c) addition of water across the double bond. The studies indicate commonality in the reaction types or processes occurring during the metabolism of various related monoterpenes and also establish the convergence of degradative pathways at a central catabolic intermediate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The “partition method” or “sub-domain method” consists of expressing the solution of a governing differential equation, partial or ordinary, in terms of functions which satisfy the boundary conditions and setting to zero the error in the differential equation integrated over each of the sub-domains into which the given domain is partitioned. In this paper, the use of this method in eigenvalue problems with particular reference to vibration of plates is investigated. The deflection of the plate is expressed in terms of polynomials satisfying the boundary conditions completely. Setting the integrated error in each of the subdomains to zero results in a set of simultaneous, linear, homogeneous, algebraic equations in the undetermined coefficients of the deflection series. The algebraic eigenvalue problem is then solved for eigenvalues and eigenvectors. Convergence is examined in a few typical cases and is found to be satisfactory. The results obtained are compared with existing results based on other methods and are found to be in very good agreement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nonlinear singular integral equation of transonic flow is examined in the free-stream Mach number range where only solutions with shocks are known to exist. It is shown that, by the addition of an artificial viscosity term to the integral equation, even the direct iterative scheme, with the linear solution as the initial iterate, leads to convergence. Detailed tables indicating how the solution varies with changes in the parameters of the artificial viscosity term are also given. In the best cases (when the artificial viscosity is smallest), the solutions compare well with known results, their characteristic feature being the representation of the shock by steep gradients rather than by abrupt discontinuities. However, 'sharp-shock solutions' have also been obtained by the implementation of a quadratic iterative scheme with the 'artificial viscosity solution' as the initial iterate; the converged solution with a sharp shock is obtained with only a few more iterates. Finally, a review is given of various shock-capturing and shock-fitting schemes for the transonic flow equations in general, and for the transonic integral equation in particular, frequent comparisons being made with the approach of this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explore here the acceleration of convergence of iterative methods for the solution of a class of quasilinear and linear algebraic equations. The specific systems are the finite difference form of the Navier-Stokes equations and the energy equation for recirculating flows. The acceleration procedures considered are: the successive over relaxation scheme; several implicit methods; and a second-order procedure. A new implicit method—the alternating direction line iterative method—is proposed in this paper. The method combines the advantages of the line successive over relaxation and alternating direction implicit methods. The various methods are tested for their computational economy and accuracy on a typical recirculating flow situation. The numerical experiments show that the alternating direction line iterative method is the most economical method of solving the Navier-Stokes equations for all Reynolds numbers in the laminar regime. The usual ADI method is shown to be not so attractive for large Reynolds numbers because of the loss of diagonal dominance. This loss can however be restored by a suitable choice of the relaxation parameter, but at the cost of accuracy. The accuracy of the new procedure is comparable to that of the well-tested successive overrelaxation method and to the available results in the literature. The second-order procedure turns out to be the most efficient method for the solution of the linear energy equation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown using an explicit model that radiative corrections can restore the symmetry of a system which may appear to be broken at the classical level. This is the reverse of the phenomenon demonstrated by Coleman and Weinberg. Our model is different from theirs, but the techniques are the same. The calculations are done up to the two-loop level and it is shown that the two-loop contribution is much smaller than the one-loop contribution, indicating good convergence of the loop expansion.