49 resultados para Continuous 1-Cocycle
Resumo:
We demonstrate in here a powerful scalable technology to synthesize continuously high quality CdSe quantum dots (QDs) in supercritical hexane. Using a low cost, highly thermally stable Cd-precursor, cadmium deoxycholate, the continuous synthesis is performed in 400 mu m ID stainless steel capillaries resulting in CdSe QDs having sharp full-width-at-half-maxima (23 nm) and high photoluminescence quantum yields (45-55%). Transmission electron microscopy images show narrow particles sizes distribution (sigma <= 5%) with well-defined crystal lattices. Using two different synthesis temperatures (250 degrees C and 310 degrees C), it was possible to obtain zinc blende and wurtzite crystal structures of CdSe QDs, respectively. This synthetic approach allows achieving substantial production rates up to 200 mg of QDs per hour depending on the targeted size, and could be easily scaled to gram per hour.
Resumo:
The current day networks use Proactive networks for adaption to the dynamic scenarios. The use of cognition technique based on the Observe, Orient, Decide and Act loop (OODA) is proposed to construct proactive networks. The network performance degradation in knowledge acquisition and malicious node presence is a problem that exists. The use of continuous time dynamic neural network is considered to achieve cognition. The variance in service rates of user nodes is used to detect malicious activity in heterogeneous networks. The improved malicious node detection rates are proved through the experimental results presented in this paper. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
Scalable stream processing and continuous dataflow systems are gaining traction with the rise of big data due to the need for processing high velocity data in near real time. Unlike batch processing systems such as MapReduce and workflows, static scheduling strategies fall short for continuous dataflows due to the variations in the input data rates and the need for sustained throughput. The elastic resource provisioning of cloud infrastructure is valuable to meet the changing resource needs of such continuous applications. However, multi-tenant cloud resources introduce yet another dimension of performance variability that impacts the application's throughput. In this paper we propose PLAStiCC, an adaptive scheduling algorithm that balances resource cost and application throughput using a prediction-based lookahead approach. It not only addresses variations in the input data rates but also the underlying cloud infrastructure. In addition, we also propose several simpler static scheduling heuristics that operate in the absence of accurate performance prediction model. These static and adaptive heuristics are evaluated through extensive simulations using performance traces obtained from Amazon AWS IaaS public cloud. Our results show an improvement of up to 20% in the overall profit as compared to the reactive adaptation algorithm.
Resumo:
This paper discusses dynamic modeling of non-isolated DC-DC converters (buck, boost and buck-boost) under continuous and discontinuous modes of operation. Three types of models are presented for each converter, namely, switching model, average model and harmonic model. These models include significant non-idealities of the converters. The switching model gives the instantaneous currents and voltages of the converter. The average model provides the ripple-free currents and voltages, averaged over a switching cycle. The harmonic model gives the peak to peak values of ripple in currents and voltages. The validity of all these models is established by comparing the simulation results with the experimental results from laboratory prototypes, at different steady state and transient conditions. Simulation based on a combination of average and harmonic models is shown to provide all relevant information as obtained from the switching model, while consuming less computation time than the latter.