72 resultados para Contamination by Pb


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lanthanum doped lead titanate thin films are the potential candidates for the capacitors, actuators and pyroelectric sensor applications due to their excellent dielectric, and ferroelectric properties. Lanthanum doped lead titanate thin films are grown on platinum coated Si substrates by excimer laser ablation technique. A broad diffused phase transition with the maximum dielectric permittivity (ϵmax) shifting to higher temperatures with the increase of frequency, along with frequency dispersion below Tc, which are the signatures of the relaxor like characteristics were observed. The dielectric properties are investigated from −60°C to 200°C with an application of different dc fields. With increasing dc field, the dielectric constant is observed to reduce and phase transition temperature shifted to higher temperature. With the increased ac signal amplitude of the applied frequency, the magnitude of the dielectric constant is increasing and the frequency dispersion is observed in ferroelectric phase, whereas in paraelectric phase, there is no dispersion has been observed. The results are correlated with the existing theories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3(x = 0.1 to 0.3) (PMN-PT) were successfully grown on the platinum coated silicon substrate by pulsed excimer laser ablation technique. A thin template layer of LaSr0.5Co0.5O3 (LSCO) was deposited on platinum substrate prior to the deposition of PMN-PT thin films. The composition and the structure of the films were modulated via proper variation of the deposition parameter such as substrate temperature, laser fluence and thickness of the template layers. We observed the impact of the thickness of LSCO template layer on the orientation of the films. The crystallographic structure and compositional variation were confirmed with x-ray diffraction and energy diffraction x-ray (EDX) analysis. A room temperature dielectric constant varying from 2000 to 4500 was noted for different composition of the films. The dielectric properties of the films were studied over the frequency range of 100 Hz - 100 kHz over a wide range of temperatures. The films exhibited the relaxor-type behavior that was characterized by the frequency dispersion of the temperature of dielectric constant maxima (Tm) and also diffuse phase transition. This relaxor nature in PMN-PT thin films was attributed to freezing of the dipole moment, which takes place below a certain temperature. This phenomenon was found to be very similar to spin glass system, where spins are observed to freeze after certain temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The GasBench II peripheral along with MAT 253 combination provides a more sensitive platform for the determination of water isotope ratios. Here, we examined the role of adsorbed moisture within the gas chromatography (GC) column of the GasBench II on measurement uncertainties. The uncertainty in O-18/O-16 ratio measurements is determined by several factors, including the presence of water in the GC. The contamination of GC with water originating from samples as water vapour over a longer timeframe is a critical factor in determining the reproducibility of O-18/O-16 ratios in water samples. The shift in isotope ratios observed in the experiment under dry and wet conditions correlates strongly with the retention time of analyte CO2, indicating the effect of accumulated moisture. Two possible methods to circumvent or minimise the effect of adsorbed water on isotope ratios are presented here. The proposed methodology includes either the regular baking of the GC column at a higher temperature (120 degrees C) after analysis of a batch of 32 sample entries or conducting the experiment at a low GC column temperature (22.5 degrees C). The effects of water contamination on long-term reproducibility of reference water, with and without baking protocol, have been described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal-slag emulsion is an important process to enhance the reaction rate between the two phases; thus, it improves the heat and mass transfer of the process significantly. Various experimental studies have been carried out, and some system specific relations have been proposed by various investigators. A unified, theoretical study is lacking to model this complex phenomenon. Therefore, two simple models based on fundamental laws for metal droplet velocity (both ascending and descending) and bubble velocity, as well as its position at any instant of time, have been proposed. Analytical solutions have been obtained for the developed equations. Analytical solutions have been verified for the droplet velocity, traveling time, and size distribution in slag phase by performing high-temperature experiments in a Pb-salt system and comparing the obtained data with theory. The proposed model has also been verified with published experimental data for various liquid systems with a wide range of physical properties. A good agreement has been found between the analytical solution and the experimental and published data in all cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports for the first time synthesis of free standing nano-crystalline copper crystals of a similar to 30-40 nm by ball milling of copper powder at 150 K under Argon atmosphere in a specially designed cryomill. The detailed characterization of these particles using multiple techniques that includes transmission electron microscopy confirms our conclusion. Careful analysis of the chemistry of these particles indicates that these particles are essentially contamination free. Through the analysis of existing models of grain size refinements during ball milling and low temperature deformation, we argue that the suppression of thermal processes and low temperature leads to formation of free nanoparticles as the process of fracture dominates over possible cold welding at low temperatures. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geochemical studies are performed to examine the impact of leachate infiltration from on-site sewage disposal systems on the groundwater chemistry in Mulbagal town, Kolar District, Karnataka State, India. The leachate infiltration imposed nitrate concentrations ranging from 4 mg/L to 388 mg/L in the groundwater samples; it was observed that 79% of the samples exhibited nitrate concentrations in excess of drinking water permissible limit (45 mg/L). The average (of 43 measurements) E. coli levels in the groundwater samples corresponded to 189 MPN/100 mL and 55% of the samples tested exhibit pathogen contamination. Results also showed that the groundwater in the study area is characterized by acidic pH, large calcium + magnesium ion and Na/Cl ratios of < unity causing majority of the ground water samples to classify as Ca-Mg-Cl type and Na-Cl type. Saturation index (SI) computation using Visual MINTEQ program showed that the groundwater samples are under-saturated with respect to calcite. The theoretical SI values (of calcite) however suggested that the groundwater samples ought to be over-saturated with calcite. Under-saturation of the groundwater samples with calcite is attributed to increased dissolution of the mineral in the acidic environment of the groundwater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accidental spills and improper disposal of industrial effluent/sludge containing heavy metals onto the open land or into subsurface result in soil and water contamination. Detailed investigations are carried out to identify the source of contamination of heavy metals in an industrial suburb near Bangalore in India. Detailed investigation of ground water and subsurface soil analysis for various heavy metals has been carried out. Ground water samples were collected in the entire area through the cluster of borewells. Subsurface soil samples were collected from near borewells which were found to contain heavy metals. Water samples and soils samples (after acid digestion) were analysed as per APHO-standard method of analysis. While the results of Zn, Ni and Cd showed that they are within allowable limits in the soil, the ground water and soils in the site have concentration of Cr+6 far exceeding the allowable limits (up to 832 mg/kg). Considering the topography of the area, ground water movement and results of chromium concentration in the borewells and subsurface it was possible to identify the origin, zone of contamination and the migration path of Cr+6. The results indicated that the predominant mechanism of migration of Cr+6 is by diffusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lead telluride micro and nanostructures have been grown on silicon and glass substrates by a simple thermal evaporation of PbTe in high vacuum of 3 x 10(-5) mbar. Growth was carried out for two different distances between the evaporation source and the substrates. Synthesized products consist of nanorods and micro towers for 2.4 cm and 3.4 cm of distance between the evaporation source and the substrates respectively. X-ray diffraction and transmission electron microscopy studies confirmed crystalline nature of the nanorods and micro towers. Nanorods were grown by vapor solid mechanism. Each micro tower consists of nano platelets and is capped with spherical catalyst particle at their end, suggesting that the growth proceeds via vapor-liquid-solid (VLS) mechanism. EDS spectrum recorded on the tip of the micro tower has shown the presence of Pb and Te confirming the self catalytic VLS growth of the micro towers. These results open up novel synthesis methods for PbTe nano and microstructures for various applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work demonstrates the synthesis of Cu-10 wt% TiB2 composites with a theoretical density of more than 90% by tailoring the spark plasma sintering (SPS) conditions in the temperature range of 400-700 degrees C. Interestingly, 10 wt% Pb addition to Cu-10 wt% TiB2 lowers the sinter density and the difference in the densification behavior of the investigated compositions was discussed in reference to the current profile recorded during a SPS cycle. The sintering kinetics and phase assemblage were also discussed in reference to surface melting of the constituents prior to bulk melting temperature, temperature dependent wettability of Pb on Cu, diffusion kinetics of Cu as well as the formation of various oxides. An important result is that a high hardness of around 2 GPa and relative density close to 92% qtheoretical was achieved for the Cu-10 wt% TiB2-10 wt% Pb composite, and such a combination has never been achieved before using any conventional processing route.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper is aimed to understand the sub-processes triggered by rapid heating during spark plasma sintering as well as to assess the extent to which densification and properties of metallic materials can be enhanced using such superfast consolidation process. Using nanocrystalline Cu-Pb as a model system, the influence of Pb as well as TiB2 addition on the densification mechanisms and properties are discussed. Importantly, a high hardness of 2 GPa is achieved in Cu-based nanocomposites. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetic saw effect, induced by the Lorentz force generated due to the application of a series of electromagnetic ( EM) pulses, can be utilized to cut a metallic component containing a pre-existing cut or crack. By combining a mechanical force with the Lorentz force, the cut can be propagated along any arbitrary direction in a controlled fashion, thus producing an `electromagnetic jigsaw', yielding a novel tool-less, free-formed manufacturing process, particularly suitable for hard-to-cut metals. This paper presents validation of the above concept based on a simple analytical model, along with experiments on two materials - Pb foil and steel plate. (C) 2013 The Authors. Published by Elsevier B.V. Selection and/or peer-review under responsibility of Professor Bert Lauwers

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano-sized bimetallic dispersoids consisting of (Pb) and beta-(Sn) phases of eutectic composition (Pb26.1Sn73.9) embedded in aluminum and Al-Cu-Fe quasicrystalline matrices have been prepared by rapid solidification processing. The two phases, face centered cubic (Pb) and body center tetragonal, beta-(Sn) solid solution co-exist in all the embedded nanoparticles at room temperature. The phases bear crystallographic orientation relationship with the matrix. In situ TEM study has been carried out for the alloy particles to study the melting and the solidification behavior. The detailed microscopic observations indicate formation of a single-phase metastable fcc (Pb) in the nano-particles prior to the melting during heating. Solidification of these particles begins with nucleation of fcc (Pb), which phase separates into fcc (Pb) and beta-(Sn) lamellae in the solid state. In situ X-ray diffraction study is carried out to obtain lattice parameter of metastable fcc (Pb) and thereby an estimate of amount of Sn dissolved in the metastable (Pb) prior to the melting. The results are discussed in terms of a metastable phase diagram between fcc Pb and fcc Sn and invoking the size effect on the metastable phase diagram. The size factor is found to play a critical role in deciding the pathway of phase transformation as well as the extension of solid solubility of Sn in fcc (Pb) in the nano-particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The industrial production and commercial applications of titanium dioxide nanoparticles have increased considerably in recent times, which has increased the probability of environmental contamination with these agents and their adverse effects on living systems. This study was designed to assess the genotoxicity potential of TiO2 NPs at high exposure concentrations, its bio-uptake, and the oxidative stress it generated, a recognised cause of genotoxicity. Allium cepa root tips were treated with TiO2 NP dispersions at four different concentrations (12.5, 25, 50, 100 mu g/mL). A dose dependant decrease in the mitotic index (69 to 21) and an increase in the number of distinctive chromosomal aberrations were observed. Optical, fluorescence and confocal laser scanning microscopy revealed chromosomal aberrations, including chromosomal breaks and sticky, multipolar, and laggard chromosomes, and micronucleus formation. The chromosomal aberrations and DNA damage were also validated by the comet assay. The bio-uptake of TiO2 in particulate form was the key cause of reactive oxygen species generation, which in turn was probably the cause of the DNA aberrations and genotoxicity observed in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compositions with x <= 0.30 in the system (1- x)Pb(Zro(0.52)Ti(0.48))O-3-(x)BiFeO3 were synthesized by sol-gel method. Rietveld analysis of X-ray diffraction data reveals tetragonal structure (P4mm) for x <= 0.05 and monoclinic (Cm) phase along with the existence of tetragonal phase for 0.10 <= x <= 0.25 and monoclinic phase for x = 0.30. Transformation of E(2TO) and E + B1 vibrational modes in the range 210-250 cm(-1) (present for x <= 0.25) into A' + A `' modes at similar to 236 cm(-1) for x = 0.30, and occurrence of new vibrational modes A' and A `' in Raman spectra for x >= 0.10 unambiguously support the presence of monoclinic phase. Occurrence of remnant polarisation and enhanced magnetization with concentration of BiFeO3 indicates superior multiferroic properties. Variation of magneto-capacitance with applied magnetic field is a strong evidence of magneto-electric multiferroic coupling in these materials. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrochemical lead ion sensor has been developed by modification of carbon paste electrode (CPE) using polypyrrole functionalized with iminodiacetic acid (IDA-PPy) containing carboxyl group. The electrochemical response of Pb2+ ion on the IDA-PPy modified CPE has been evaluated and the controling parameters have been optimized using differential pulse anodic stripping voltammetry (DPASV). The IDA-PPy modified CPE shows a linear correlation for Pb2+ concentrations in the range of 1 x 10(-6) to 5 x 10(-9) M and the lower detection limit of Pb2+ has been found to be 9.6 x 10(-9) M concentration. Other tested metal ions, namely Cu2+, Cd2+, Co2+, Hg2+, Ni2+ and Zn2+, do not exhibit any voltammetric stripping response below 1 x 10(-7) M concentration. However, the Pb2+ response is affected in the presence of molar equivalents or higher concentrations of Cu2+, Cd2+ and Co2+ ions in binary systems with Pb2+, consequent to their ability to bind with iminodiacetic acid, while Hg2+, Ni2+ and Zn2+ do not interfere at all. A good correlation has been observed between the lead concentrations as analyzed by DPASV using IDA-PPy modified CPE and atomic absorption spectrophotometry for a lead containing industrial effluent sample. (C) 2014 Elsevier Ltd. All rights reserved.