62 resultados para Congregation of Holy Cross
Resumo:
The conformation and stability of pearl millet prolamin (pennisetin) were examined by using circular dichroism and C-13 nuclear magnetic resonance spectroscopy. The far UV spectrum of pennisetin in 70% (v/v) aqueous ethanol showed the presence of predominant alpha-helical structure and its occurrence in the alpha + beta class of protein. The far and near UV spectra of pennisetin in ethanol: trifluoroethanol also supported this observation. However pennisetin showed the presence of some helical structure in 8 M urea which is known to be a highly unordered structure forming solvent. A decrease in alpha helical content of native pennisetin was observed with rise in temperature from 5-75-degrees-C and this effect of temperature was found to be reversible. A C-13 NMR spectrum of pennisetin in 70% ethanol suggested a high degree of molecular mobility in ethanol. Comparison of the cross polarization spectrum with the single pulse excitation spectrum suggested pennisetin to be a heterogeneous protein.
Resumo:
The major heat-stable shrimp allergen (designated as Sa-II), capable of provoking IgE-mediated immediate type hypersensitivity reactions after the ingestion of cooked shrimp, has been shown to be a 34-kDa heat- stable protein containing 300 amino acid residues. Here, we report that a comparison of amino acid sequences of different peptides generated by proteolysis of Sa-II revealed an 86% homology with tropomyosin from Drosophila melanogaster, suggesting that Sa-II could be the shrimp muscle protein tropomyosin. To establish that Sa-II is indeed tropomyosin, the latter was isolated from uncooked shrimp (Penaeus indicus) and its physicochemical and immunochemical properties were compared with those of Sa-II. Both tropomyosin and Sa-II had the same molecular mass and focused in the isoelectric pH range of 4.8 to 5.4. In the presence of 6 M urea, the mobility of both Sa-II and shrimp tropomyosin shifted to give an apparent molecular mass of 50 kDa, which is a characteristic property of tropomyosins. Shrimp tropomyosin bound to specific IgE antibodies in the sera of shrimp-sensitive patients as assessed by competitive ELISA inhibition and Western blot analysis. Tryptic maps of both Sa-II and tropomyosin as obtained by reverse phase HPLC were superimposable. Dot-blot and competitive ELISA inhibition using sera of shrimp-sensitive patients revealed that antigenic as well as allergenic activities were associated with two peptide fractions. These IgE-binding tryptic peptides were purified and sequenced. Mouse anti-anti-idiotypic antibodies raised against Sa-II specific human idiotypic antibodies recognized not only tropomyosin but also the two allergenic peptides, thus suggesting that these peptides represent the major IgE binding epitopes of tropomyosin. A comparison of the amino acid sequence of shrimp tropomyosin in the region of IgE binding epitopes (residues 50-66 and 153-161) with the corresponding regions of tropomyosins from different vertebrates confirmed lack of allergenic cross-reactivity between tropomyosins from phylogenetically distinct species.
Resumo:
The catalytic conversion of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) to adenosine diphosphate (ADP) by adenylate kinase (ADK) involves large amplitude, ligand induced domain motions, involving the opening and the closing of ATP binding domain (LID) and AMP binding domain (NMP) domains, during the repeated catalytic cycle. We discover and analyze an interesting dynamical coupling between the motion of the two domains during the opening, using large scale atomistic molecular dynamics trajectory analysis, covariance analysis, and multidimensional free energy calculations with explicit water. Initially, the LID domain must open by a certain amount before the NMP domain can begin to open. Dynamical correlation map shows interesting cross-peak between LID and NMP domain which suggests the presence of correlated motion between them. This is also reflected in our calculated two-dimensional free energy surface contour diagram which has an interesting elliptic shape, revealing a strong correlation between the opening of the LID domain and that of the NMP domain. Our free energy surface of the LID domain motion is rugged due to interaction with water and the signature of ruggedness is evident in the observed root mean square deviation variation and its fluctuation time correlation functions. We develop a correlated dynamical disorder-type theoretical model to explain the observed dynamic coupling between the motion of the two domains in ADK. Our model correctly reproduces several features of the cross-correlation observed in simulations. (C) 2011 American Institute of Physics. doi:10.1063/1.3516588]
Resumo:
We propose F-norm of the cross-correlation part of the array covariance matrix as a measure of correlation between the impinging signals and study the performance of different decorrelation methods in the broadband case using this measure. We first show that dimensionality of the composite signal subspace, defined as the number of significant eigenvectors of the source sample covariance matrix, collapses in the presence of multipath and the spatial smoothing recovers this dimensionality. Using an upper bound on the proposed measure, we then study the decorrelation of the broadband signals with spatial smoothing and the effect of spacing and directions of the sources on the rate of decorrelation with progressive smoothing. Next, we introduce a weighted smoothing method based on Toeplitz-block-Toeplitz (TBT) structuring of the data covariance matrix which decorrelates the signals much faster than the spatial smoothing. Computer simulations are included to demonstrate the performance of the two methods.
Resumo:
We describe a QCD motivated model for total cross-sections which uses the eikonal representation and incorporates QCD mini-jets to drive the rise with energy of the cross-section, while the impact parameter distribution is obtained through the Fourier transform of the transverse momentum distribution of soft gluons emitted in the parton-parton interactions giving rise to mini-jets in the final state. A singular but integral expression for the running coupling constant in the infrared region is part of this model.
Resumo:
In this work, one-dimensional flow-acoustic analysis of two basic configurations of air cleaners, (i) Rectangular Axial-Inlet, Axial-Outlet (RAIAO) and (ii) Rectangular Transverse-Inlet, Transverse-Outlet (RTITO), has been presented. This 1-D analytical approach has been verified with the help of 3-D FEM based software. Through subtraction of the acoustic performance of the bare plenum (without filter element) from that of the complete air cleaner box, the solitary performance of the filter element has been evaluated. Part of the present analysis illustrates that the analytical formulation remains effective even with offset positioning of the air pipes from the centre of the cross section of the air cleaner. The 1-D analytical tool computes much faster than its 3-D simulation counterpart. The present analysis not only predicts the acoustical impact of mean flow, but it also depicts the scenario with increased resistance of the filter element. Thus, the proposed 1-D analysis would help in the design of acoustically efficient air cleaners for automotive applications. (C) 2011 Institute of Noise Control Engineering.
Resumo:
The evolution of texture and microstructure during recrystallization is studied for two-phase copper alloy (Cu–40Zn) with a variation of the initial texture and microstructure (hot rolled and solution treated) as well as the mode of rolling (deformation path: uni-directional rolling and cross rolling). The results of bulk texture have been supported by micro-texture and microstructure studies carried out using electron back scatter diffraction (EBSD). The initial microstructural condition as well as the mode of rolling has been found to alter the recrystallization texture and microstructure. The uni-directionally rolled samples showed a strong Goss and BR {236}385 component while a weaker texture similar to that of rolling evolved for the cross-rolled samples in the α phase on recrystallization. The recrystallization texture of the β phase was similar to that of the rolling texture with discontinuous 101 α and {111} γ fiber with high intensity at {111}101. For a given microstructure, the cross-rolled samples showed a higher fraction of coincident site lattice Σ3 twin boundaries in the α phase. The higher fraction of Σ3 boundaries is explained on the basis of the higher propensity of growth accidents during annealing of the cross-rolled samples. The present investigation demonstrates that change in strain path, as introduced during cross-rolling, could be a viable tool for grain boundary engineering of low SFE fcc materials.
Resumo:
Quinoxaline antibiotics (Fig. 1a, b) form a useful group of compounds for the study of drug–nucleic acid interactions1,2. They consist of a cross-bridged cyclic octadepsipeptide, variously modified, bearing two quinoxaline chromophores. These antibiotics intercalate bifunctionally into DNA2,3 probably via the narrow groove, forming a complex in which, most probably, two base pairs are sandwiched between the chromophores4,5. Depending on the nature of their sulphur-containing cross-bridge and modifications to their amino acid side chains, they display characteristic patterns of nucleotide sequence selectivity when binding to DNAs of different base composition and to synthetic polydeoxynucleotides4,6,7. This specificity has been tentatively ascribed to specific hydrogen-bonding interactions between functional groups in the DNA and complementary moieties on the peptide ring2,4,5. Variations in selectivity have been attributed both to changes in the conformation of the peptide backbone6 and no modifications of the cross-bridge7. These suggestions were made, however, in the absence of firm knowledge about the three-dimensional structure and conformation of the antibiotic molecules. We now report the X-ray structure analysis of the synthetic analogue of the antibiotic triostin A, TANDEM (des-N-tetramethyl triostin A) (Fig. 1c), which binds preferentially to alternating adenine-thymine sequences7. The X-ray structure provides a starting point for exploring the origin of this specificity and suggests possible models for the binding of other members of the quinoxaline series.
Resumo:
The evolution of microstructure and texture in commercially pure titanium has been studied as a function of strain path during rolling using experimental techniques and viscoplastic self-consistent simulations. Four different strain paths, namely unidirectional rolling, two-step cross rolling, multistep cross rolling, and reverse rolling, have been employed to decipher the effect of strain path change on the evolution of deformation texture and microstructure. The cross-rolled samples show higher hardness with lower microstrain and intragranular misorientation compared to the unidirectional rolled sample as determined from X-ray diffraction and electron backscatter diffraction, respectively. The higher hardness of the cross-rolled samples is attributed to orientation hardening due to the near basal texture. Viscoplastic self-consistent simulations are able to successfully predict the texture evolution of the differently rolled samples. Simulation results indicate the higher contribution of basal slip in the formation of near basal texture and as well as lower intragranular misorientation in the cross-rolled samples.
Resumo:
We describe our kt-resummation model for total cross-sections and show its application to pp and ¯pp scattering. The model uses mini-jets to drive the rise of the cross-section and soft gluon resummation in the infrared region to transform the violent rise of the mini-jet cross-section into a logarithmic behaviour in agreement with the Froissart bound.
Resumo:
Thymic atrophy is known to occur during infections; however, there is limited understanding of its causes and of the cross-talk between different pathways. This study investigates mechanisms involved in thymic atrophy during a model of oral infection by Salmonella enterica serovar Typhimurium (S.typhimurium). Significant death of CD4+CD8+ thymocytes, but not of single-positive thymocytes or peripheral lymphocytes, is observed at later stages during infection with live, but not heat-killed, bacteria. The death of CD4+CD8+ thymocytes is Fas-independent as shown by infection studies with lpr mice. However, apoptosis occurs with lowering of mitochondrial potential and higher caspase-3 activity. The amounts of cortisol, a glucocorticoid, and interferon- (IFN-), an inflammatory cytokine, increase upon infection. To investigate the functional roles of these molecules, studies were performed using Ifn/ mice together with RU486, a glucocorticoid receptor antagonist. Treatment of C57BL/6 mice with RU486 does not affect colony-forming units (CFU), amounts of IFN- and mouse survival; however, there is partial rescue in thymocyte death. Upon infection, Ifn/ mice display higher CFU and lower survival but more surviving thymocytes are recovered. However, there is no difference in cortisol amounts in C57BL/6 and Ifn/ mice. Importantly, the number of CD4+CD8+ thymocytes is significantly higher in Ifn/ mice treated with RU486 along with lower caspase-3 activity and mitochondrial damage. Hence, endogenous glucocorticoid and IFN--mediated pathways are parallel but synergize in an additive manner to induce death of CD4+CD8+ thymocytes during S.typhimurium infection. The implications of this study for host responses during infection are discussed.
Resumo:
We investigate the evolution of polymer structure and its influence on uniaxial anisotropic stress under time-varying uniaxial strain, and the role of external control variables such as temperature, strain rate, chain length, and density, using molecular dynamics simulation. At temperatures higher than glass transition, stress anisotropy in the system is reduced even though the bond stretch is greater at higher temperatures. There is a significant increase in the stress level with increasing density. At higher densities, the uncoiling of the chains is suppressed and the major contribution to the deformation is by internal deformation of the chains. At faster rates of loading stress anisotropy increases. The deformation mechanism is mostly due to bond stretch and bond bending rather than overall shape and size. Stress levels increase with longer chain length. There is a critical value of the functionality of the cross-linkers beyond which the uniaxial stress developed increases caused primarily by bond stretching due to increased constraint on the motion of the monomers. Stacking of the chains in the system also plays a dominant role in the behaviour in terms of excluded volume interactions. Low density, high temperature, low values of functionality of cross-linkers, and short chain length facilitate chain uncoiling and chain slipping in cross-linked polymers.
Resumo:
In the present study, a detailed visualization of the transport of fuel film has been performed in a small carburetted engine with a transparent manifold at the exit of the carburettor. The presence of fuel film is observed significantly on the lower half of the manifold at idling, while at load conditions, the film is found to be distributed all throughout the manifold walls. Quantitative measurement of the fuel film in a specially-designed manifold of square cross section has also been performed using the planar laser-induced fluorescence (PLIF) technique. The measured fuel film thickness is observed to be of the order of 1 nun at idling, and in the range of 0.1 to 0.4 mm over the range of load and speed studied. These engine studies are complemented by experiments conducted in a carburettor rig to study the state of the fuel exiting the carburettor. Laser-based Particle/Droplet Image Analysis (PDIA) technique is used to identify fuel droplets and ligaments and estimate droplet diameters. At a throttle position corresponding to idling, the fuel exiting the carburettor is found to consist of very fine droplets of size less than 15 mu m and large fuel ligaments associated with length scales of the order of 500 mu m and higher. For a constant pressure difference across the carburettor, the fuel consists of droplets with an SMD of the order of 30 mu m. Also, the effect of liquid fuel film on the cold start HC emissions is studied. Based on the understanding obtained from these studies, strategies such as manifold heating and varying carburettor main jet nozzle diameter are implemented. These are observed to reduce emissions under both idling and varying load conditions.
Resumo:
Longitudinal relaxation due to cross-correlation between dipolar ((HN-1H alpha)-H-1) and amide-proton chemical shift anisotropy (H-1(N) CSA) has been measured in a model tripeptide Piv-(L)Pro-(L)Pro-(L)Phe-OMe. The peptide bond across diproline segment is known to undergo cis/trans isomerization and only in the cis form does the lone Phe amide-proton become involved in intramolecular hydrogen bonding. The strength of the cross correlated relaxation interference is found to be significantly different between cis and trans forms, and this difference is shown as an influence of intramolecular hydrogen bonding on the amide-proton CSA. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The cross-sectional stiffness matrix is derived for a pre-twisted, moderately thick beam made of transversely isotropic materials and having rectangular cross sections. An asymptotically-exact methodology is used to model the anisotropic beam from 3-D elasticity, without any further assumptions. The beam is allowed to have large displacements and rotations, but small strain is assumed. The strain energy is computed making use of the beam constitutive law and kinematical relations derived with the inclusion of geometrical nonlinearities and an initial twist. The energy functional is minimized making use of the Variational Asymptotic Method (VAM), thereby reducing the cross section to a point on the beam reference line with appropriate properties, forming a 1-D constitutive law. VAM is a mathematical technique employed in the current problem to rigorously split the 3-D analysis of beams into two: a 2-D analysis over the beam cross-sectional domain, which provides a compact semi-analytical form of the properties of the cross sections, and a nonlinear 1-D analysis of the beam reference curve. In this method, as applied herein, the cross-sectional analysis is performed asymptotically by taking advantage of a material small parameter and two geometric small parameters. 3-D strain components are derived using kinematics and arranged in orders of the small parameters. Closed-form expressions are derived for the 3-D non-linear warping and stress fields. Warping functions are obtained by the minimization of strain energy subject to certain set of constraints that render the 1-D strain measures well-defined. The zeroth-order 3-D warping field thus yielded is then used to integrate the 3-D strain energy density over the cross section, resulting in the 1-D strain energy density, which in turn helps identify the corresponding cross-sectional stiffness matrix. The model is capable of predicting interlaminar and transverse shear stresses accurately up to first order.