61 resultados para Computer algorithms.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The specific objective of this paper is to develop direct digital control strategies for an ammonia reactor using quadratic regulator theory and compare the performance of the resultant control system with that under conventional PID regulators. The controller design studies are based on a ninth order state-space model obtained from the exact nonlinear distributed model using linearization and lumping approximations. The evaluation of these controllers with reference to their disturbance rejection capabilities and transient response characteristics, is carried out using hybrid computer simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we approach the problem of computing the characteristic polynomial of a matrix from the combinatorial viewpoint. We present several combinatorial characterizations of the coefficients of the characteristic polynomial, in terms of walks and closed walks of different kinds in the underlying graph. We develop algorithms based on these characterizations, and show that they tally with well-known algorithms arrived at independently from considerations in linear algebra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a novel technique for reducing the power consumed by the on-chip cache in SNUCA chip multicore platform. This is achieved by what we call a "remap table", which maps accesses to the cache banks that are as close as possible to the cores, on which the processes are scheduled. With this technique, instead of using all the available cache, we use a portion of the cache and allocate lesser cache to the application. We formulate the problem as an energy-delay (ED) minimization problem and solve it offline using a scalable genetic algorithm approach. Our experiments show up to 40% of savings in the memory sub-system power consumption and 47% savings in energy-delay product (ED).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a novel technique for reducing the power consumed by the on-chip cache in SNUCA chip multicore platform. This is achieved by what we call a "remap table", which maps accesses to the cache banks that are as close as possible to the cores, on which the processes are scheduled. With this technique, instead of using all the available cache, we use a portion of the cache and allocate lesser cache to the application. We formulate the problem as an energy-delay (ED) minimization problem and solve it offline using a scalable genetic algorithm approach. Our experiments show up to 40% of savings in the memory sub-system power consumption and 47% savings in energy-delay product (ED).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural Support Vector Machines (SSVMs) have become a popular tool in machine learning for predicting structured objects like parse trees, Part-of-Speech (POS) label sequences and image segments. Various efficient algorithmic techniques have been proposed for training SSVMs for large datasets. The typical SSVM formulation contains a regularizer term and a composite loss term. The loss term is usually composed of the Linear Maximum Error (LME) associated with the training examples. Other alternatives for the loss term are yet to be explored for SSVMs. We formulate a new SSVM with Linear Summed Error (LSE) loss term and propose efficient algorithms to train the new SSVM formulation using primal cutting-plane method and sequential dual coordinate descent method. Numerical experiments on benchmark datasets demonstrate that the sequential dual coordinate descent method is faster than the cutting-plane method and reaches the steady-state generalization performance faster. It is thus a useful alternative for training SSVMs when linear summed error is used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The q-Gaussian distribution results from maximizing certain generalizations of Shannon entropy under some constraints. The importance of q-Gaussian distributions stems from the fact that they exhibit power-law behavior, and also generalize Gaussian distributions. In this paper, we propose a Smoothed Functional (SF) scheme for gradient estimation using q-Gaussian distribution, and also propose an algorithm for optimization based on the above scheme. Convergence results of the algorithm are presented. Performance of the proposed algorithm is shown by simulation results on a queuing model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of optimal routing in a multi-stage network of queues with constraints on queue lengths. We develop three algorithms for probabilistic routing for this problem using only the total end-to-end delays. These algorithms use the smoothed functional (SF) approach to optimize the routing probabilities. In our model all the queues are assumed to have constraints on the average queue length. We also propose a novel quasi-Newton based SF algorithm. Policies like Join Shortest Queue or Least Work Left work only for unconstrained routing. Besides assuming knowledge of the queue length at all the queues. If the only information available is the expected end-to-end delay as with our case such policies cannot be used. We also give simulation results showing the performance of the SF algorithms for this problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time series classification deals with the problem of classification of data that is multivariate in nature. This means that one or more of the attributes is in the form of a sequence. The notion of similarity or distance, used in time series data, is significant and affects the accuracy, time, and space complexity of the classification algorithm. There exist numerous similarity measures for time series data, but each of them has its own disadvantages. Instead of relying upon a single similarity measure, our aim is to find the near optimal solution to the classification problem by combining different similarity measures. In this work, we use genetic algorithms to combine the similarity measures so as to get the best performance. The weightage given to different similarity measures evolves over a number of generations so as to get the best combination. We test our approach on a number of benchmark time series datasets and present promising results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The boxicity (cubicity) of a graph G, denoted by box(G) (respectively cub(G)), is the minimum integer k such that G can be represented as the intersection graph of axis parallel boxes (cubes) in ℝ k . The problem of computing boxicity (cubicity) is known to be inapproximable in polynomial time even for graph classes like bipartite, co-bipartite and split graphs, within an O(n 0.5 − ε ) factor for any ε > 0, unless NP = ZPP. We prove that if a graph G on n vertices has a clique on n − k vertices, then box(G) can be computed in time n22O(k2logk) . Using this fact, various FPT approximation algorithms for boxicity are derived. The parameter used is the vertex (or edge) edit distance of the input graph from certain graph families of bounded boxicity - like interval graphs and planar graphs. Using the same fact, we also derive an O(nloglogn√logn√) factor approximation algorithm for computing boxicity, which, to our knowledge, is the first o(n) factor approximation algorithm for the problem. We also present an FPT approximation algorithm for computing the cubicity of graphs, with vertex cover number as the parameter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smoothed functional (SF) schemes for gradient estimation are known to be efficient in stochastic optimization algorithms, especially when the objective is to improve the performance of a stochastic system However, the performance of these methods depends on several parameters, such as the choice of a suitable smoothing kernel. Different kernels have been studied in the literature, which include Gaussian, Cauchy, and uniform distributions, among others. This article studies a new class of kernels based on the q-Gaussian distribution, which has gained popularity in statistical physics over the last decade. Though the importance of this family of distributions is attributed to its ability to generalize the Gaussian distribution, we observe that this class encompasses almost all existing smoothing kernels. This motivates us to study SF schemes for gradient estimation using the q-Gaussian distribution. Using the derived gradient estimates, we propose two-timescale algorithms for optimization of a stochastic objective function in a constrained setting with a projected gradient search approach. We prove the convergence of our algorithms to the set of stationary points of an associated ODE. We also demonstrate their performance numerically through simulations on a queuing model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the parameterized complexity ofMaxColorable Induced Subgraph on perfect graphs. The problem asks for a maximum sized q-colorable induced subgraph of an input graph G. Yannakakis and Gavril IPL 1987] showed that this problem is NP-complete even on split graphs if q is part of input, but gave a n(O(q)) algorithm on chordal graphs. We first observe that the problem is W2]-hard parameterized by q, even on split graphs. However, when parameterized by l, the number of vertices in the solution, we give two fixed-parameter tractable algorithms. The first algorithm runs in time 5.44(l) (n+#alpha(G))(O(1)) where #alpha(G) is the number of maximal independent sets of the input graph. The second algorithm runs in time q(l+o()l())n(O(1))T(alpha) where T-alpha is the time required to find a maximum independent set in any induced subgraph of G. The first algorithm is efficient when the input graph contains only polynomially many maximal independent sets; for example split graphs and co-chordal graphs. The running time of the second algorithm is FPT in l alone (whenever T-alpha is a polynomial in n), since q <= l for all non-trivial situations. Finally, we show that (under standard complexitytheoretic assumptions) the problem does not admit a polynomial kernel on split and perfect graphs in the following sense: (a) On split graphs, we do not expect a polynomial kernel if q is a part of the input. (b) On perfect graphs, we do not expect a polynomial kernel even for fixed values of q >= 2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the first q-Gaussian smoothed functional (SF) estimator of the Hessian and the first Newton-based stochastic optimization algorithm that estimates both the Hessian and the gradient of the objective function using q-Gaussian perturbations. Our algorithm requires only two system simulations (regardless of the parameter dimension) and estimates both the gradient and the Hessian at each update epoch using these. We also present a proof of convergence of the proposed algorithm. In a related recent work (Ghoshdastidar, Dukkipati, & Bhatnagar, 2014), we presented gradient SF algorithms based on the q-Gaussian perturbations. Our work extends prior work on SF algorithms by generalizing the class of perturbation distributions as most distributions reported in the literature for which SF algorithms are known to work turn out to be special cases of the q-Gaussian distribution. Besides studying the convergence properties of our algorithm analytically, we also show the results of numerical simulations on a model of a queuing network, that illustrate the significance of the proposed method. In particular, we observe that our algorithm performs better in most cases, over a wide range of q-values, in comparison to Newton SF algorithms with the Gaussian and Cauchy perturbations, as well as the gradient q-Gaussian SF algorithms. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new Hessian estimator based on the simultaneous perturbation procedure, that requires three system simulations regardless of the parameter dimension. We then present two Newton-based simulation optimization algorithms that incorporate this Hessian estimator. The two algorithms differ primarily in the manner in which the Hessian estimate is used. Both our algorithms do not compute the inverse Hessian explicitly, thereby saving on computational effort. While our first algorithm directly obtains the product of the inverse Hessian with the gradient of the objective, our second algorithm makes use of the Sherman-Morrison matrix inversion lemma to recursively estimate the inverse Hessian. We provide proofs of convergence for both our algorithms. Next, we consider an interesting application of our algorithms on a problem of road traffic control. Our algorithms are seen to exhibit better performance than two Newton algorithms from a recent prior work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 3-Hitting Set problem involves a family of subsets F of size at most three over an universe U. The goal is to find a subset of U of the smallest possible size that intersects every set in F. The version of the problem with parity constraints asks for a subset S of size at most k that, in addition to being a hitting set, also satisfies certain parity constraints on the sizes of the intersections of S with each set in the family F. In particular, an odd (even) set is a hitting set that hits every set at either one or three (two) elements, and a perfect code is a hitting set that intersects every set at exactly one element. These questions are of fundamental interest in many contexts for general set systems. Just as for Hitting Set, we find these questions to be interesting for the case of families consisting of sets of size at most three. In this work, we initiate an algorithmic study of these problems in this special case, focusing on a parameterized analysis. We show, for each problem, efficient fixed-parameter tractable algorithms using search trees that are tailor-made to the constraints in question, and also polynomial kernels using sunflower-like arguments in a manner that accounts for equivalence under the additional parity constraints.