141 resultados para Compressible flows
Resumo:
An analytical solution is presented for the laminar swirling flow in a tube. Attention is given to a particular type of swirling flow corresponding to a zero longitudinal acceleration parameter, with large suction at the surface. The investigation shows that in the case of very large rates of suction the velocity overshoot can be almost eliminated. This is even possible in flows with swirls which are characterized by a velocity overshoot in the longitudinal direction.
Time-dependent flows of rotating and stratified fluids in geometries with non-uniform cross-sections
Resumo:
Unsteady rotating and stratified flows in geometries with non-uniform cross-sections are investigated under Oseen approximation using Laplace transform technique. The solutions are obtained in closed form and they reveal that the flow remains oscillatory even after infinitely large time. The existence of inertial waves propagating in both positive and negative directions of the flow is observed. When the Rossby or Froude number is close to a certain infinite set of critical values the blocking and back flow occur and the flow pattern becomes more and more complicated with increasing number of stagnant zones when each critical value is crossed. The analogy that is observed in the solutions for rotating and stratified flows is also discussed.
Resumo:
The unsteady laminar compressible boundary-layer flow in the immediate vicinity of a two-dimensional stagnation point due to an incident stream whose velocity varies arbitrarily with time is considered. The governing partial differential equations, involving both time and the independent similarity variable, are transformed into new co-ordinates with finite ranges by means of a transformation which maps an infinite interval into a finite one. The resulting equations are solved by converting them into a matrix equation through the application of implicit finite-difference formulae. Computations have been carried out for two particular unsteady free-stream velocity distributions: (1) a constantly accelerating stream and (2) a fluctuating stream. The results show that in the former case both the skin-friction and the heat-transfer parameter increase steadily with time after a certain instant, while in the latter they oscillate thus responding to the fluctuations in the free-stream velocity.
Resumo:
The paper studies the influence of vectored suction or injection on the flow and heat transfer at the stagnation point of a two-dimensional body (a cylinder) and an axisymmetric body (a sphere) with allowance for the effects of variable gas properties. The analysis is based on the boundary-layer equations in dimensionless form for the steady compressible fluid with variable properties in the stagnation region of a two-dimensional or an axisymmetric body with tangential and normal surface mass transfer under similarity requirements. It is shown that the variation of the density-viscosity product across the boundary layer has a strong effect on the skin friction and heat transfer. This gives rise to a point of inflection which can be removed by suction and by increasing the wall temperature. The skin friction and heat transfer are significantly affected by the pressure gradient parameter.
Resumo:
The nature of the neutral curves for the stability of a Helmholtz velocity profile in a stratified, Boussinesq fluid in the presence of a uniform magnetic field for the cases (1) an infinite fluid (2) a semi-infinite fluid with a rigid boundary is discussed.
Resumo:
The solution of the steady laminar incompressible nonsimilar boundary-layer problem for micropolar fluids over two-dimensional and axisymmetric bodies has been presented. The partial differential equations governing the flow have been transformed into new co-ordinates having finite range. The resulting equations have been solved numerically using implicit finite-difference scheme. The computations have been carried out for a cylinder and a sphere. The results indicate that the separation in micropolar fluids occurs at earlier streamwise locations as compared to Newtonian fluids. The skin friction and velocity profiles depend on the shape of the body and are almost insensitive to microrotation or coupling parameter, provided the coupling parameter is small. On the other hand, the microrotation profiles and microrotation gradient depend on the microrotation parameter and they are insensitive to the coupling parameter.
Resumo:
The modified local stability scheme is applied to several two-dimensional problems—blunt body flow, regular reflection of a shock and lambda shock. The resolution of the flow features obtained by the modified local stability scheme is found to be better than that achieved by the other first order schemes and almost identical to that achieved by the second order schemes incorporating artificial viscosity. The scheme is easy for coding, consumes moderate amount of computer storage and time. The scheme can be advantageously used in place of second order schemes.
Resumo:
The effect of suction on the steady laminar incompressible boundarylayer flow for a stationary infinite disc with or without magnetic field, when the fluid at a large distance from the surface of the disc undergoes a solid body rotation, has been studied. The governing coupled nonlinear equations have been solved numerically using the shooting method with least square convergence criterion. It has been found that suction tends to reduce the velocity overshoot and damp the oscillation.
Resumo:
We discuss two temperature accretion disk flows around rotating black holes. As we know that to explain observed hard X-rays the choice of Keplerian angular momentum profile is not unique, we consider the sub-Keplerian regime of the disk. Without any strict knowledge of the magnetic field structure, we assume the cooling mechanism is dominated by bremsstrahlung process. We show that in a range of Shakura-Sunyaev viscosity parameter 0.2 greater than or similar to alpha greater than or similar to 0.0005, flow behavior varies widely, particularly by means of the size of disk, efficiency of cooling and corresponding temperatures of ions and electrons. We also show that the disk around a rotating black hole is hotter compared to that around a Schwarzschild black hole, rendering a larger difference between ion and electron temperatures in the former case. With all the theoretical solutions in hand, finally we reproduce the observed luminosities (L) of two extreme cases-the under-fed AGNs and quasars (e.g. Sgr A') with L greater than or similar to 10(33) erg/s to ultra-luminous X-ray sources with L similar to 10(41) erg/s, at different combinations of mass accretion rate, ratio of specific heats, Shakura-Sunyaev viscosity parameter and Kerr parameter, and conclude that Sgr A' may be an intermediate spinning black hole.
Resumo:
The equation of motion for a toroidal flux ring in a stellar convective envelope is derived, and the equilibrium of such a ring is considered. Necessary conditions for the stability of toroidal flux rings are derived, and results of stability calculations for a particular model of the meridional flow are presented. The motions of the flux rings when the rings are far from their equilibrium position or when equilibrium does not exist are considered. The results confirm the linear stability analysis, and show that in the absence of stable equilibrium, the rings move toward the solar surface along a trajectory which is parallel to the rotation axis. It is expected that viscosity will tend to reduce the rotational velocity difference between the flux ring and its surroundings, thus reducing the Coriolis force and altering the equilibrium. The storage time of toroidal flux rings is estimated, and some implications for the sun are discussed.
Resumo:
Rapid granular flows are defined as flows in which the time scales for the particle interactions are small compared to the inverse of the strain rate, so that the particle interactions can be treated as instantaneous collisions. We first show, using Discrete Element simulations, that even very dense flows of sand or glass beads with volume fraction between 0.5 and 0.6 are rapid granular flows. Since collisions are instantaneous, a kinetic theory approach for the constitutive relations is most appropriate, and we present kinetic theory results for different microscopic models for particle interaction. The significant difference between granular flows and normal fluids is that energy is not conserved in a granular flow. The differences in the hydrodynamic modes caused by the non-conserved nature of energy are discussed. Going beyond the Boltzmann equation, the effect of correlations is studied using the ring kinetic approximation, and it is shown that the divergences in the viscometric coefficients, which are present for elastic fluids, are not present for granular flows because energy is not conserved. The hydrodynamic model is applied to the flow down an inclined plane. Since energy is not a conserved variable, the hydrodynamic fields in the bulk of a granular flow are obtained from the mass and momentum conservation equations alone. Energy becomes a relevant variable only in thin 'boundary layers' at the boundaries of the flow where there is a balance between the rates of conduction and dissipation. We show that such a hydrodynamic model can predict the salient features of a chute flow, including the flow initiation when the angle of inclination is increased above the 'friction angle', the striking lack of observable variation of the volume fraction with height, the observation of a steady flow only for certain restitution coefficients, and the density variations in the boundary layers.
Resumo:
The micropolar fluids like Newtonian and Non-Newtonian fluids cannot sustain a simple shearing motion, wherein only one component of velocity is present. They exhibit both primary and secondary motions when the boundaries are subject to slow rotations. The primary motion, as in Non-Newtonian fluids, characterized by the equation due to Rivlin-Ericksen, Oldroyd, Walters etc., resembles that of Newtonian fluid for slow steady rotation. We further notice that the micro-rotation becomes identically equal to the vorticity present in the fluid and the condition b) of "Wall vorticity" can alone be satisfied at the boundaries. As regards, the secondary motion, we notice that it can be determined by the above procedure for a special class of fluids, namely that for which j0(n2-n3)=4 n3/l2. Moreover for this class of fluids, the micro-rotation is identical with the vorticity of the fluid everywhere. Also the stream function for the secondary flow is identical with that for the Newtonian fluid with a suitable definition of the Reynolds number. In contrast with the Non-Newtonian fluids, characterized by the equation due to Rivlin-Ericksen, Oldroyd, Walters etc., this class of micropolar fluids does not show separation. This is in conformity with the statement of Condiff and Dahler (3) that in any steady flow, internal spin matches the vorticity everywhere provided that (i) spin boundary conditions are satisfied, (ii) body torques and non-conservative body forces are absent, and (iii) inertial and spin-inertial terms are either negligible or vanish identically.
Resumo:
In this paper we have studied the flow of a micropolar fluid, whose constitutive equations were given by Eringen, in two dimensional plane flow. In two notes, we have discussed the validity of the boundary condition v=a ω and its effect on the entire flow field. We have restricted our study to the case when Stokes' approximation is valid, i. e. slow motion for it is difficult to uncouple the equations in the most general case.