52 resultados para Cloud service
Resumo:
We present deep Washington photometry of 45 poorly populated star cluster candidates in the Large Magellanic Cloud (LMC). We have performed a systematic study to estimate the parameters of the cluster candidates by matching theoretical isochrones to the cleaned and dereddened cluster color-magnitude diagrams. We were able to estimate the basic parameters for 33 clusters, out of which 23 are identified as single clusters and 10 are found to be members of double clusters. The other 12 cluster candidates have been classified as possible clusters/asterisms. About 50% of the true clusters are in the 100-300 Myr age range, whereas some are older or younger. We have discussed the distribution of age, location, and reddening with respect to field, as well as the size of true clusters. The sizes and masses of the studied sample are found to be similar to that of open clusters in the Milky Way. Our study adds to the lower end of cluster mass distribution in the LMC, suggesting that the LMC, apart from hosting rich clusters, also has formed small, less massive open clusters in the 100-300 Myr age range.
Resumo:
We consider optimal power allocation policies for a single server, multiuser system. The power is consumed in transmission of data only. The transmission channel may experience multipath fading. We obtain very efficient, low computational complexity algorithms which minimize power and ensure stability of the data queues. We also obtain policies when the users may have mean delay constraints. If the power required is a linear function of rate then we exploit linearity and obtain linear programs with low complexity.
Resumo:
We consider the problem of optimizing the workforce of a service system. Adapting the staffing levels in such systems is non-trivial due to large variations in workload and the large number of system parameters do not allow for a brute force search. Further, because these parameters change on a weekly basis, the optimization should not take longer than a few hours. Our aim is to find the optimum staffing levels from a discrete high-dimensional parameter set, that minimizes the long run average of the single-stage cost function, while adhering to the constraints relating to queue stability and service-level agreement (SLA) compliance. The single-stage cost function balances the conflicting objectives of utilizing workers better and attaining the target SLAs. We formulate this problem as a constrained parameterized Markov cost process parameterized by the (discrete) staffing levels. We propose novel simultaneous perturbation stochastic approximation (SPSA)-based algorithms for solving the above problem. The algorithms include both first-order as well as second-order methods and incorporate SPSA-based gradient/Hessian estimates for primal descent, while performing dual ascent for the Lagrange multipliers. Both algorithms are online and update the staffing levels in an incremental fashion. Further, they involve a certain generalized smooth projection operator, which is essential to project the continuous-valued worker parameter tuned by our algorithms onto the discrete set. The smoothness is necessary to ensure that the underlying transition dynamics of the constrained Markov cost process is itself smooth (as a function of the continuous-valued parameter): a critical requirement to prove the convergence of both algorithms. We validate our algorithms via performance simulations based on data from five real-life service systems. For the sake of comparison, we also implement a scatter search based algorithm using state-of-the-art optimization tool-kit OptQuest. From the experiments, we observe that both our algorithms converge empirically and consistently outperform OptQuest in most of the settings considered. This finding coupled with the computational advantage of our algorithms make them amenable for adaptive labor staffing in real-life service systems.
Resumo:
Recent studies, over regions influenced by biomass burning aerosol, have shown that it is possible to define a critical cloud fraction' (CCF) at which the aerosol direct radiative forcing switch from a cooling to a warming effect. Using 4 years of multi-satellite data analysis, we show that CCF varies with aerosol composition and changed from 0.28 to 0.13 from postmonsoon to winter as a result of shift from less absorbing to moderately absorbing aerosol. Our results indicate that we can estimate aerosol absorption from space using independently measured top of the atmosphere (TOA) fluxes Cloud Aerosol Lidar with Orthogonal Polarization-Moderate resolution Imaging Spectroradiometer-Clouds and the Earth's Radiant Energy System (CALIPSO-MODIS-CERES)] combined algorithms for example.
Resumo:
We have estimated a metallicity map of the Large Magellanic Cloud (LMC) using the Magellanic Cloud Photometric Survey (MCPS) and Optical Gravitational Lensing Experiment (OGLE III) photometric data. This is a first of its kind map of metallicity up to a radius of 4 degrees-5 degrees, derived using photometric data and calibrated using spectroscopic data of Red Giant Branch (RGB) stars. We identify the RGB in the V, (V - I) colour-magnitude diagrams of small subregions of varying sizes in both data sets. We use the slope of the RGB as an indicator of the average metallicity of a subregion, and calibrate the RGB slope to metallicity using spectroscopic data for field and cluster red giants in selected subregions. The average metallicity of the LMC is found to be Fe/H] = -0.37 dex (sigmaFe/H] = 0.12) from MCPS data, and Fe/H] = -0.39 dex (sigmaFe/H] = 0.10) from OGLE III data. The bar is found to be the most metal-rich region of the LMC. Both the data sets suggest a shallow radial metallicity gradient up to a radius of 4 kpc (-0.049 +/- 0.002 dex kpc(-1) to -0.066 +/- 0.006 dex kpc(-1)). Subregions in which the mean metallicity differs from the surrounding areas do not appear to correlate with previously known features; spectroscopic studies are required in order to assess their physical significance.
Resumo:
Clock synchronization is highly desirable in distributed systems, including many applications in the Internet of Things and Humans. It improves the efficiency, modularity, and scalability of the system, and optimizes use of event triggers. For IoTH, BLE - a subset of the recent Bluetooth v4.0 stack - provides a low-power and loosely coupled mechanism for sensor data collection with ubiquitous units (e.g., smartphones and tablets) carried by humans. This fundamental design paradigm of BLE is enabled by a range of broadcast advertising modes. While its operational benefits are numerous, the lack of a common time reference in the broadcast mode of BLE has been a fundamental limitation. This article presents and describes CheepSync, a time synchronization service for BLE advertisers, especially tailored for applications requiring high time precision on resource constrained BLE platforms. Designed on top of the existing Bluetooth v4.0 standard, the CheepSync framework utilizes low-level time-stamping and comprehensive error compensation mechanisms for overcoming uncertainties in message transmission, clock drift, and other system-specific constraints. CheepSync was implemented on custom designed nRF24Cheep beacon platforms (as broadcasters) and commercial off-the-shelf Android ported smartphones (as passive listeners). We demonstrate the efficacy of CheepSync by numerous empirical evaluations in a variety of experimental setups, and show that its average (single-hop) time synchronization accuracy is in the 10 mu s range.